4,022 research outputs found

    Advances in Data Mining Knowledge Discovery and Applications

    Get PDF
    Advances in Data Mining Knowledge Discovery and Applications aims to help data miners, researchers, scholars, and PhD students who wish to apply data mining techniques. The primary contribution of this book is highlighting frontier fields and implementations of the knowledge discovery and data mining. It seems to be same things are repeated again. But in general, same approach and techniques may help us in different fields and expertise areas. This book presents knowledge discovery and data mining applications in two different sections. As known that, data mining covers areas of statistics, machine learning, data management and databases, pattern recognition, artificial intelligence, and other areas. In this book, most of the areas are covered with different data mining applications. The eighteen chapters have been classified in two parts: Knowledge Discovery and Data Mining Applications

    VPRS-based regional decision fusion of CNN and MRF classifications for very fine resolution remotely sensed images

    Get PDF
    Recent advances in computer vision and pattern recognition have demonstrated the superiority of deep neural networks using spatial feature representation, such as convolutional neural networks (CNN), for image classification. However, any classifier, regardless of its model structure (deep or shallow), involves prediction uncertainty when classifying spatially and spectrally complicated very fine spatial resolution (VFSR) imagery. We propose here to characterise the uncertainty distribution of CNN classification and integrate it into a regional decision fusion to increase classification accuracy. Specifically, a variable precision rough set (VPRS) model is proposed to quantify the uncertainty within CNN classifications of VFSR imagery, and partition this uncertainty into positive regions (correct classifications) and non-positive regions (uncertain or incorrect classifications). Those “more correct” areas were trusted by the CNN, whereas the uncertain areas were rectified by a Multi-Layer Perceptron (MLP)-based Markov random field (MLP-MRF) classifier to provide crisp and accurate boundary delineation. The proposed MRF-CNN fusion decision strategy exploited the complementary characteristics of the two classifiers based on VPRS uncertainty description and classification integration. The effectiveness of the MRF-CNN method was tested in both urban and rural areas of southern England as well as Semantic Labelling datasets. The MRF-CNN consistently outperformed the benchmark MLP, SVM, MLP-MRF and CNN and the baseline methods. This research provides a regional decision fusion framework within which to gain the advantages of model-based CNN, while overcoming the problem of losing effective resolution and uncertain prediction at object boundaries, which is especially pertinent for complex VFSR image classification

    A rough set decision tree based MLP-CNN for very high resolution remotely sensed image classification

    Get PDF
    Recent advances in remote sensing have witnessed a great amount of very high resolution (VHR) images acquired at sub-metre spatial resolution. These VHR remotely sensed data has post enormous challenges in processing, analysing and classifying them effectively due to the high spatial complexity and heterogeneity. Although many computer-aid classification methods that based on machine learning approaches have been developed over the past decades, most of them are developed toward pixel level spectral differentiation, e.g. Multi-Layer Perceptron (MLP), which are unable to exploit abundant spatial details within VHR images. This paper introduced a rough set model as a general framework to objectively characterize the uncertainty in CNN classification results, and further partition them into correctness and incorrectness on the map. The correct classification regions of CNN were trusted and maintained, whereas the misclassification areas were reclassified using a decision tree with both CNN and MLP. The effectiveness of the proposed rough set decision tree based MLP-CNN was tested using an urban area at Bournemouth, United Kingdom. The MLP-CNN, well capturing the complementarity between CNN and MLP through the rough set based decision tree, achieved the best classification performance both visually and numerically. Therefore, this research paves the way to achieve fully automatic and effective VHR image classification

    Machine Learning Approach for Risk-Based Inspection Screening Assessment

    Get PDF
    Risk-based inspection (RBI) screening assessment is used to identify equipment that makes a significant contribution to the system's total risk of failure (RoF), so that the RBI detailed assessment can focus on analyzing higher-risk equipment. Due to its qualitative nature and high dependency on sound engineering judgment, screening assessment is vulnerable to human biases and errors, and thus subject to output variability and threatens the integrity of the assets. This paper attempts to tackle these challenges by utilizing a machine learning approach to conduct screening assessment. A case study using a dataset of RBI assessment for oil and gas production and processing units is provided, to illustrate the development of an intelligent system, based on a machine learning model for performing RBI screening assessment. The best performing model achieves accuracy and precision of 92.33% and 84.58%, respectively. A comparative analysis between the performance of the intelligent system and the conventional assessment is performed to examine the benefits of applying the machine learning approach in the RBI screening assessment. The result shows that the application of the machine learning approach potentially improves the quality of the conventional RBI screening assessment output by reducing output variability and increasing accuracy and precision.acceptedVersio
    • …
    corecore