3,266 research outputs found

    Evaluation of linear classifiers on articles containing pharmacokinetic evidence of drug-drug interactions

    Full text link
    Background. Drug-drug interaction (DDI) is a major cause of morbidity and mortality. [...] Biomedical literature mining can aid DDI research by extracting relevant DDI signals from either the published literature or large clinical databases. However, though drug interaction is an ideal area for translational research, the inclusion of literature mining methodologies in DDI workflows is still very preliminary. One area that can benefit from literature mining is the automatic identification of a large number of potential DDIs, whose pharmacological mechanisms and clinical significance can then be studied via in vitro pharmacology and in populo pharmaco-epidemiology. Experiments. We implemented a set of classifiers for identifying published articles relevant to experimental pharmacokinetic DDI evidence. These documents are important for identifying causal mechanisms behind putative drug-drug interactions, an important step in the extraction of large numbers of potential DDIs. We evaluate performance of several linear classifiers on PubMed abstracts, under different feature transformation and dimensionality reduction methods. In addition, we investigate the performance benefits of including various publicly-available named entity recognition features, as well as a set of internally-developed pharmacokinetic dictionaries. Results. We found that several classifiers performed well in distinguishing relevant and irrelevant abstracts. We found that the combination of unigram and bigram textual features gave better performance than unigram features alone, and also that normalization transforms that adjusted for feature frequency and document length improved classification. For some classifiers, such as linear discriminant analysis (LDA), proper dimensionality reduction had a large impact on performance. Finally, the inclusion of NER features and dictionaries was found not to help classification.Comment: Pacific Symposium on Biocomputing, 201

    Modeling of Large Pharmacokinetic Data Using Nonlinear Mixed-Effects: A Paradigm Shift in Veterinary Pharmacology. A Case Study With Robenacoxib in Cats

    Get PDF
    The objective of this study was to model the pharmacokinetics (PKs) of robenacoxib in cats using a nonlinear mixed‐effects (NLME) approach, leveraging all available information collected from cats receiving robenacoxib s.c. and/or i.v.: 47 densely sampled laboratory cats and 36 clinical cats sparsely sampled preoperatively. Data from both routes were modeled sequentially using Monolix 4.3.2. Influence of parameter correlations and available covariates (age, gender, bodyweight, and anesthesia) on population parameter estimates were evaluated by using multiple samples from the posterior distribution of the random effects. A bicompartmental disposition model with simultaneous zero and first‐order absorption best described robenacoxib PKs in blood. Clearance was 0.502 L/kg/h and the bioavailability was high (78%). The absorption constant point estimate (Ka = 0.68 h−1) was lower than beta (median, 1.08 h−1), unveiling flip‐flop kinetics. No dosing adjustment based on available covariates information is advocated. This modeling work constitutes the first application of NLME in a large feline population

    Artemisinins

    Get PDF
    Artemisinins were discovered to be highly effective antimalarial drugs shortly after the isolation of the parent artemisinin in 1971 in China. These compounds combine potent, rapid antimalarial activity with a wide therapeutic index and an absence of clinically important resistance. Artemisinin containing regimens meet the urgent need to find effective treatments for multidrug resistant malaria and have recently been advocated for widespread deployment. Comparative trials of artesunate and quinine for severe malaria are in progress to see if the persistently high mortality of this condition can be reduced

    An automated approach to identify scientific publications reporting pharmacokinetic parameters [version 1; peer review: awaiting peer review]

    Get PDF
    Pharmacokinetic (PK) predictions of new chemical entities are aided by prior knowledge from other compounds. The development of robust algorithms that improve preclinical and clinical phases of drug development remains constrained by the need to search, curate and standardise PK information across the constantly-growing scientific literature. The lack of centralised, up-to-date and comprehensive repositories of PK data represents a significant limitation in the drug development pipeline.In this work, we propose a machine learning approach to automatically identify and characterise scientific publications reporting PK parameters from in vivo data, providing a centralised repository of PK literature. A dataset of 4,792 PubMed publications was labelled by field experts depending on whether in vivo PK parameters were estimated in the study. Different classification pipelines were compared using a bootstrap approach and the best-performing architecture was used to develop a comprehensive and automatically-updated repository of PK publications. The best-performing architecture encoded documents using unigram features and mean pooling of BioBERT embeddings obtaining an F1 score of 83.8% on the test set. The pipeline retrieved over 121K PubMed publications in which in vivo PK parameters were estimated and it was scheduled to perform weekly updates on newly published articles. All the relevant documents were released through a publicly available web interface (https://app.pkpdai.com) and characterised by the drugs, species and conditions mentioned in the abstract, to facilitate the subsequent search of relevant PK data. This automated, open-access repository can be used to accelerate the search and comparison of PK results, curate ADME datasets, and facilitate subsequent text mining tasks in the PK domain.</ns4:p

    Chapter Challenges and New Frontiers in the Paediatric Drug Discovery and Development

    Get PDF
    Drug discovery and development advances in the last decades allowed to find a treatment for many preventable diseases. However, all too often, children are excluded from these progresses since most of the new medicines have been discovered and developed for the adult population. Even if paediatricians routinely give drugs to children ‘off-label’, researchers have demonstrated that children do not respond to medications in the same way as adults. Furthermore, certain specific disorders are unique to children or occur in children differently than in adults. Besides specifically testing medicines in children in proper clinical studies taking into due account the peculiarity of this population, there is a growing recognition of the need to develop paediatric medicines having in mind the specificities of this vulnerable population. In this chapter, we will provide an overview on the drug discovery and development path for children highlighting challenges and new frontiers of each phase from the discovery to the preclinical and clinical development as well as we will provide a slightest hint about paediatric biomarkers discovery, age-appropriate formulation, pregnancy, and perinatal pharmacology and in silico pharmacology. Finally, pricing and reimbursement policies for medicines and new and existing research initiatives in the field will be discussed

    Evaluation of linear classifiers on articles containing pharmacokinetic evidence of drug-drug interactions

    Get PDF
    Background. Drug-drug interaction (DDI) is a major cause of morbidity and mortality. DDI research includes the study of different aspects of drug interactions, from in vitro pharmacology, which deals with drug interaction mechanisms, to pharmaco-epidemiology, which investigates the effects of DDI on drug efficacy and adverse drug reactions. Biomedical literature mining can aid both kinds of approaches by extracting relevant DDI signals from either the published literature or large clinical databases. However, though drug interaction is an ideal area for translational research, the inclusion of literature mining methodologies in DDI workflows is still very preliminary. One area that can benefit from literature mining is the automatic identification of a large number of potential DDIs, whose pharmacological mechanisms and clinical significance can then be studied via in vitro pharmacology and in populo pharmaco-epidemiology. Experiments. We implemented a set of classifiers for identifying published articles relevant to experimental pharmacokinetic DDI evidence. These documents are important for identifying causal mechanisms behind putative drug-drug interactions, an important step in the extraction of large numbers of potential DDIs. We evaluate performance of several linear classifiers on PubMed abstracts, under different feature transformation and dimensionality reduction methods. In addition, we investigate the performance benefits of including various publicly-available named entity recognition features, as well as a set of internally-developed pharmacokinetic dictionaries. Results. We found that several classifiers performed well in distinguishing relevant and irrelevant abstracts. We found that the combination of unigram and bigram textual features gave better performance than unigram features alone, and also that normalization transforms that adjusted for feature frequency and document length improved classification. For some classifiers, such as linear discriminant analysis (LDA), proper dimensionality reduction had a large impact on performance. Finally, the inclusion of NER features and dictionaries was found not to help classification.IU -Indiana Universit

    The implications of model-informed drug discovery and development for tuberculosis

    Get PDF
    Despite promising advances in the field and highly effective first-line treatment, an estimated 9.6 million people are still infected with tuberculosis (TB). Innovative methods are required to effectively transition the growing number of compounds into novel combination regimens. However, progression of compounds into patients occurs despite the lack of clear understanding of the pharmacokinetic–pharmacodynamic (PK/PD) relations. The PreDiCT-TB consortium was established in response to the existing gaps in TB drug development. The aim of the consortium is to develop new preclinical tools in concert with an in silico model-based approach, grounded in PKPD principles. Here, we highlight the potential impact of such an integrated framework on various stages in TB drug development and on the dose rationale for drug combinations
    • 

    corecore