77,949 research outputs found

    Abstraction of Agents Executing Online and their Abilities in the Situation Calculus

    Get PDF
    We develop a general framework for abstracting online behavior of an agent that may acquire new knowledge during execution (e.g., by sensing), in the situation calculus and ConGolog. We assume that we have both a high-level action theory and a low-level one that represent the agent's behavior at different levels of detail. In this setting, we define ability to perform a task/achieve a goal, and then show that under some reasonable assumptions, if the agent has a strategy by which she is able to achieve a goal at the high level, then we can refine it into a low-level strategy to do so

    Situation awareness and ability in coalitions

    Get PDF
    This paper proposes a discussion on the formal links between the Situation Calculus and the semantics of interpreted systems as far as they relate to Higher-Level Information Fusion tasks. Among these tasks Situation Analysis require to be able to reason about the decision processes of coalitions. Indeed in higher levels of information fusion, one not only need to know that a certain proposition is true (or that it has a certain numerical measure attached), but rather needs to model the circumstances under which this validity holds as well as agents' properties and constraints. In a previous paper the authors have proposed to use the Interpreted System semantics as a potential candidate for the unification of all levels of information fusion. In the present work we show how the proposed framework allow to bind reasoning about courses of action and Situation Awareness. We propose in this paper a (1) model of coalition, (2) a model of ability in the situation calculus language and (3) a model of situation awareness in the interpreted systems semantics. Combining the advantages of both Situation Calculus and the Interpreted Systems semantics, we show how the Situation Calculus can be framed into the Interpreted Systems semantics. We illustrate on the example of RAP compilation in a coalition context, how ability and situation awareness interact and what benefit is gained. Finally, we conclude this study with a discussion on possible future works

    On First-Order μ-Calculus over Situation Calculus Action Theories

    Get PDF
    In this paper we study verification of situation calculus action theories against first-order mu-calculus with quantification across situations. Specifically, we consider mu-La and mu-Lp, the two variants of mu-calculus introduced in the literature for verification of data-aware processes. The former requires that quantification ranges over objects in the current active domain, while the latter additionally requires that objects assigned to variables persist across situations. Each of these two logics has a distinct corresponding notion of bisimulation. In spite of the differences we show that the two notions of bisimulation collapse for dynamic systems that are generic, which include all those systems specified through a situation calculus action theory. Then, by exploiting this result, we show that for bounded situation calculus action theories, mu-La and mu-Lp have exactly the same expressive power. Finally, we prove decidability of verification of mu-La properties over bounded action theories, using finite faithful abstractions. Differently from the mu-Lp case, these abstractions must depend on the number of quantified variables in the mu-La formula

    Progression and Verification of Situation Calculus Agents with Bounded Beliefs

    Get PDF
    We investigate agents that have incomplete information and make decisions based on their beliefs expressed as situation calculus bounded action theories. Such theories have an infinite object domain, but the number of objects that belong to fluents at each time point is bounded by a given constant. Recently, it has been shown that verifying temporal properties over such theories is decidable. We take a first-person view and use the theory to capture what the agent believes about the domain of interest and the actions affecting it. In this paper, we study verification of temporal properties over online executions. These are executions resulting from agents performing only actions that are feasible according to their beliefs. To do so, we first examine progression, which captures belief state update resulting from actions in the situation calculus. We show that, for bounded action theories, progression, and hence belief states, can always be represented as a bounded first-order logic theory. Then, based on this result, we prove decidability of temporal verification over online executions for bounded action theories. © 2015 The Author(s

    Logic-Based Specification Languages for Intelligent Software Agents

    Full text link
    The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.Comment: 67 pages, 1 table, 1 figure. Accepted for publication by the Journal "Theory and Practice of Logic Programming", volume 4, Maurice Bruynooghe Editor-in-Chie

    Supporting adaptiveness of cyber-physical processes through action-based formalisms

    Get PDF
    Cyber Physical Processes (CPPs) refer to a new generation of business processes enacted in many application environments (e.g., emergency management, smart manufacturing, etc.), in which the presence of Internet-of-Things devices and embedded ICT systems (e.g., smartphones, sensors, actuators) strongly influences the coordination of the real-world entities (e.g., humans, robots, etc.) inhabitating such environments. A Process Management System (PMS) employed for executing CPPs is required to automatically adapt its running processes to anomalous situations and exogenous events by minimising any human intervention. In this paper, we tackle this issue by introducing an approach and an adaptive Cognitive PMS, called SmartPM, which combines process execution monitoring, unanticipated exception detection and automated resolution strategies leveraging on three well-established action-based formalisms developed for reasoning about actions in Artificial Intelligence (AI), including the situation calculus, IndiGolog and automated planning. Interestingly, the use of SmartPM does not require any expertise of the internal working of the AI tools involved in the system

    Geospatial Narratives and their Spatio-Temporal Dynamics: Commonsense Reasoning for High-level Analyses in Geographic Information Systems

    Full text link
    The modelling, analysis, and visualisation of dynamic geospatial phenomena has been identified as a key developmental challenge for next-generation Geographic Information Systems (GIS). In this context, the envisaged paradigmatic extensions to contemporary foundational GIS technology raises fundamental questions concerning the ontological, formal representational, and (analytical) computational methods that would underlie their spatial information theoretic underpinnings. We present the conceptual overview and architecture for the development of high-level semantic and qualitative analytical capabilities for dynamic geospatial domains. Building on formal methods in the areas of commonsense reasoning, qualitative reasoning, spatial and temporal representation and reasoning, reasoning about actions and change, and computational models of narrative, we identify concrete theoretical and practical challenges that accrue in the context of formal reasoning about `space, events, actions, and change'. With this as a basis, and within the backdrop of an illustrated scenario involving the spatio-temporal dynamics of urban narratives, we address specific problems and solutions techniques chiefly involving `qualitative abstraction', `data integration and spatial consistency', and `practical geospatial abduction'. From a broad topical viewpoint, we propose that next-generation dynamic GIS technology demands a transdisciplinary scientific perspective that brings together Geography, Artificial Intelligence, and Cognitive Science. Keywords: artificial intelligence; cognitive systems; human-computer interaction; geographic information systems; spatio-temporal dynamics; computational models of narrative; geospatial analysis; geospatial modelling; ontology; qualitative spatial modelling and reasoning; spatial assistance systemsComment: ISPRS International Journal of Geo-Information (ISSN 2220-9964); Special Issue on: Geospatial Monitoring and Modelling of Environmental Change}. IJGI. Editor: Duccio Rocchini. (pre-print of article in press
    corecore