160,493 research outputs found

    MFM-Net: Unpaired Shape Completion Network with Multi-stage Feature Matching

    Full text link
    Unpaired 3D object completion aims to predict a complete 3D shape from an incomplete input without knowing the correspondence between the complete and incomplete shapes during training. To build the correspondence between two data modalities, previous methods usually apply adversarial training to match the global shape features extracted by the encoder. However, this ignores the correspondence between multi-scaled geometric information embedded in the pyramidal hierarchy of the decoder, which makes previous methods struggle to generate high-quality complete shapes. To address this problem, we propose a novel unpaired shape completion network, named MFM-Net, using multi-stage feature matching, which decomposes the learning of geometric correspondence into multi-stages throughout the hierarchical generation process in the point cloud decoder. Specifically, MFM-Net adopts a dual path architecture to establish multiple feature matching channels in different layers of the decoder, which is then combined with the adversarial learning to merge the distribution of features from complete and incomplete modalities. In addition, a refinement is applied to enhance the details. As a result, MFM-Net makes use of a more comprehensive understanding to establish the geometric correspondence between complete and incomplete shapes in a local-to-global perspective, which enables more detailed geometric inference for generating high-quality complete shapes. We conduct comprehensive experiments on several datasets, and the results show that our method outperforms previous methods of unpaired point cloud completion with a large margin

    Visualizing the Quantum Interaction Picture in Phase Space

    Full text link
    We illustrate the correspondence between the quantum Interaction Picture-evolution of the state of a quantum system in Hilbert space and a combination of local and global transformations of its Wigner function in phase space. To this aim, we consider the time-evolution of a quantized harmonic oscillator driven by both a linear and a quadratic (in terms of bosonic creation and annihilation operators) potentials and employ the Magnus series to derive the exact form of the time-evolution operator. In this case, the Interaction Picture corresponds to a local transformation of phase space-reference frame into the one that is co-moving with the Wigner function.Comment: Submitted to New Journal of Physic

    Mediating boundaries between knowledge and knowing: ICT and R4D praxis

    Get PDF
    Research for development (R4D) praxis (theory-informed practical action) can be underpinned by the use of Information and Communication Technologies (ICTs) which, it is claimed, provide opportunities for knowledge working and sharing. Such a framing implicitly or explicitly constructs a boundary around knowledge as reified, or commodified – or at least able to be stabilized for a period of time (first order knowledge). In contrast ‘third-generation knowledge’ emphasizes the social nature of learning and knowledge-making; this reframes knowledge as a negotiated social practice, thus constructing a different system boundary. This paper offers critical reflections on the use of a wiki as a data repository and mediating technical platform as part of innovating in R4D praxis. A sustainable social learning process was sought that fostered an emergent community of practice among biophysical and social researchers acting for the first time as R4D co-researchers. Over time the technologically mediated element of the learning system was judged to have failed. This inquiry asks: How can learning system design cultivate learning opportunities and respond to learning challenges in an online environment to support R4D practice? Confining critical reflection to the online learning experience alone ignores the wider context in which knowledge work took place; therefore the institutional setting is also considered

    Methodological issues in national-comparative research on cultural tastes : the case of cultural capital in the UK and Finland

    Get PDF
    Drawing on two projects which develop the methodological model of Bourdieu’s Distinction in the UK and Finland, this paper explores the issues raised by the use of multiple correspondence analysis (MCA) and mixed methods in comparative work on cultural tastes. By identifying the problems in the construction of two comparable yet nationally relevant research instruments, the paper considers the importance of the similarities and differences in the meaning of items in different national spaces for Bourdieu-inspired comparative analysis. The paper also reports on the evident similarities between the two constructed spaces and draws on the dialogue between quantitative and qualitative methods enabled by MCA in examining what different positions in social space appear to mean in these countries country. It concludes by suggesting that, whilst Bourdieu’s model provides a robust set of methods for exploring relations between taste and class within nations, used appropriately, it can also provide particular insight to the comparison between national fields

    Bondi-Metzner-Sachs symmetry, holography on null-surfaces and area proportionality of "light-slice" entropy

    Full text link
    It is shown that certain kinds of behavior, which hitherto were expected to be characteristic for classical gravity and quantum field theory in curved spacetime, as the infinite dimensional Bondi-Metzner-Sachs symmetry, holography on event horizons and an area proportionality of entropy, have in fact an unnoticed presence in Minkowski QFT. This casts new light on the fundamental question whether the volume propotionality of heat bath entropy and the (logarithmically corrected) dimensionless area law obeyed by localization-induced thermal behavior are different geometric parametrizations which share a common primordeal algebraic origin. Strong arguments are presented that these two different thermal manifestations can be directly related, this is in fact the main aim of this paper. It will be demonstrated that QFT beyond the Lagrangian quantization setting receives crucial new impulses from holography onto horizons. The present paper is part of a project aimed at elucidating the enormous physical range of "modular localization". The latter does not only extend from standard Hamitonian heat bath thermal states to thermal aspects of causal- or event- horizons addressed in this paper. It also includes the recent understanding of the crossing property of formfactors whose intriguing similarity with thermal properties was, although sometimes noticed, only sufficiently understood in the modular llocalization setting.Comment: 42 pages, changes, addition of new results and new references, in this form the paper will appear in Foundations of Physic

    Death and Lightness: Using a Demographic Model to Find Support Verbs

    Full text link
    Some verbs have a particular kind of binary ambiguity: they can carry their normal, full meaning, or they can be merely acting as a prop for the nominal object. It has been suggested that there is a detectable pattern in the relationship between a verb acting as a prop (a \term{support verb}) and the noun it supports. The task this paper undertakes is to develop a model which identifies the support verb for a particular noun, and by extension, when nouns are enumerated, a model which disambiguates a verb with respect to its support status. The paper sets up a basic model as a standard for comparison; it then proposes a more complex model, and gives some results to support the model's validity, comparing it with other similar approaches.Comment: LaTeX, 8 pages, uses aclap.st

    Holographic Gravitational Anomalies

    Full text link
    In the AdS/CFT correspondence one encounters theories that are not invariant under diffeomorphisms. In the boundary theory this is a gravitational anomaly, and can arise in 4k+2 dimensions. In the bulk, there can be gravitational Chern-Simons terms which vary by a total derivative. We work out the holographic stress tensor for such theories, and demonstrate agreement between the bulk and boundary. Anomalies lead to novel effects, such as a nonzero angular momentum for global AdS(3). In string theory such Chern-Simons terms are known with exact coefficients. The resulting anomalies, combined with symmetries, imply corrections to the Bekenstein-Hawking entropy of black holes that agree exactly with the microscopic counting.Comment: 25 page

    Composite Higgs under LHC Experimental Scrutiny

    Full text link
    The LHC has been built to understand the dynamics at the origin of the breaking of the electroweak symmetry. Weakly coupled models with a fundamental Higgs boson have focused most of the attention of the experimental searches. We will discuss here how to reinterpret these searches in the context of strongly coupled models where the Higgs boson emerges as a composite particle. In particular, we use LHC data to constrain the compositeness scale. We also briefly review the prospects to observe other bosonic and fermionic resonances of the strong sector.Comment: 6 pages. Contribution to the proceedings of Hadron Collider Physics Symposium 2011, Paris Nov. 14-1
    • 

    corecore