2,359 research outputs found

    Quantum Knitting

    Get PDF
    We analyze the connections between the mathematical theory of knots and quantum physics by addressing a number of algorithmic questions related to both knots and braid groups. Knots can be distinguished by means of `knot invariants', among which the Jones polynomial plays a prominent role, since it can be associated with observables in topological quantum field theory. Although the problem of computing the Jones polynomial is intractable in the framework of classical complexity theory, it has been recently recognized that a quantum computer is capable of approximating it in an efficient way. The quantum algorithms discussed here represent a breakthrough for quantum computation, since approximating the Jones polynomial is actually a `universal problem', namely the hardest problem that a quantum computer can efficiently handle.Comment: 29 pages, 5 figures; to appear in Laser Journa

    A 3-Stranded Quantum Algorithm for the Jones Polynomial

    Full text link
    Let K be a 3-stranded knot (or link), and let L denote the number of crossings in K. Let ϵ1\epsilon_{1} and ϵ2\epsilon_{2} be two positive real numbers such that ϵ2\epsilon_{2} is less than or equal to 1. In this paper, we create two algorithms for computing the value of the Jones polynomial of K at all points t=exp(iϕ)t=exp(i\phi) of the unit circle in the complex plane such that the absolute value of ϕ\phi is less than or equal to π/3\pi/3. The first algorithm, called the classical 3-stranded braid (3-SB) algorithm, is a classical deterministic algorithm that has time complexity O(L). The second, called the quantum 3-SB algorithm, is a quantum algorithm that computes an estimate of the Jones polynomial of K at exp(iϕ))exp(i\phi)) within a precision of ϵ1\epsilon_{1} with a probability of success bounded below by $1-\epsilon_{2}%. The execution time complexity of this algorithm is O(nL), where n is the ceiling function of (ln(4/\epsilon_{2}))/(2(\epsilon_{2})^2). The compilation time complexity, i.e., an asymptotic measure of the amount of time to assemble the hardware that executes the algorithm, is O(L).Comment: 19 pages, 10 figures, to appear in Proc. SPIE, 6573-29, (2007

    On the Complexity of Random Quantum Computations and the Jones Polynomial

    Get PDF
    There is a natural relationship between Jones polynomials and quantum computation. We use this relationship to show that the complexity of evaluating relative-error approximations of Jones polynomials can be used to bound the classical complexity of approximately simulating random quantum computations. We prove that random quantum computations cannot be classically simulated up to a constant total variation distance, under the assumption that (1) the Polynomial Hierarchy does not collapse and (2) the average-case complexity of relative-error approximations of the Jones polynomial matches the worst-case complexity over a constant fraction of random links. Our results provide a straightforward relationship between the approximation of Jones polynomials and the complexity of random quantum computations.Comment: 8 pages, 4 figure

    On the Quantum Computational Complexity of the Ising Spin Glass Partition Function and of Knot Invariants

    Full text link
    It is shown that the canonical problem of classical statistical thermodynamics, the computation of the partition function, is in the case of +/-J Ising spin glasses a particular instance of certain simple sums known as quadratically signed weight enumerators (QWGTs). On the other hand it is known that quantum computing is polynomially equivalent to classical probabilistic computing with an oracle for estimating QWGTs. This suggests a connection between the partition function estimation problem for spin glasses and quantum computation. This connection extends to knots and graph theory via the equivalence of the Kauffman polynomial and the partition function for the Potts model.Comment: 8 pages, incl. 2 figures. v2: Substantially rewritte

    Post Quantum Cryptography from Mutant Prime Knots

    Full text link
    By resorting to basic features of topological knot theory we propose a (classical) cryptographic protocol based on the `difficulty' of decomposing complex knots generated as connected sums of prime knots and their mutants. The scheme combines an asymmetric public key protocol with symmetric private ones and is intrinsecally secure against quantum eavesdropper attacks.Comment: 14 pages, 5 figure
    • …
    corecore