53 research outputs found

    The parametrized complexity of knot polynomials

    Get PDF
    AbstractWe study the parametrized complexity of the knot (and link) polynomials known as Jones polynomials, Kauffman polynomials and HOMFLY polynomials. It is known that computing these polynomials is ♯P hard in general. We look for parameters of the combinatorial presentation of knots and links which make the computation of these polynomials to be fixed parameter tractable, i.e., in the complexity class FPT. If the link is explicitly presented as a closed braid, the number of its strands is known to be such a parameter. In a generalization thereof, if the link is explicitly presented as a combination of compositions and rotations of k-tangles the link is called k-algebraic, and its algebraicity k is such a parameter. The previously known proofs that, for this parameter, the link polynomials are in FPT uses the so called skein modules, and is algebraic in its nature. Furthermore, it is not clear how to find such an algebraic presentation from a given link diagram. We look at the treewidth of two combinatorial presentation of links: the crossing diagram and its shading diagram, a signed graph. We show that the treewidth of these two presentations and the algebraicity of links are all linearly related to each other. Furthermore, we characterize the k-algebraic links using the pathwidth of the crossing diagram. Using this, we can apply algorithms for testing fixed treewidth to find k-algebraic presentations in polynomial time. From this we can conclude that also treewidth and pathwidth are parameters of link diagrams for which the knot polynomials are FPT. For the Kauffman and Jones polynomials (but not for the HOMFLY polynomials) we get also a different proof for FPT via the corresponding result for signed Tutte polynomials

    The complexity of detecting taut angle structures on triangulations

    Full text link
    There are many fundamental algorithmic problems on triangulated 3-manifolds whose complexities are unknown. Here we study the problem of finding a taut angle structure on a 3-manifold triangulation, whose existence has implications for both the geometry and combinatorics of the triangulation. We prove that detecting taut angle structures is NP-complete, but also fixed-parameter tractable in the treewidth of the face pairing graph of the triangulation. These results have deeper implications: the core techniques can serve as a launching point for approaching decision problems such as unknot recognition and prime decomposition of 3-manifolds.Comment: 22 pages, 10 figures, 3 tables; v2: minor updates. To appear in SODA 2013: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithm

    Treewidth, crushing, and hyperbolic volume

    Get PDF
    We prove that there exists a universal constant cc such that any closed hyperbolic 3-manifold admits a triangulation of treewidth at most cc times its volume. The converse is not true: we show there exists a sequence of hyperbolic 3-manifolds of bounded treewidth but volume approaching infinity. Along the way, we prove that crushing a normal surface in a triangulation does not increase the carving-width, and hence crushing any number of normal surfaces in a triangulation affects treewidth by at most a constant multiple.Comment: 20 pages, 12 figures. V2: Section 4 has been rewritten, as the former argument (in V1) used a construction that relied on a wrong theorem. Section 5.1 has also been adjusted to the new construction. Various other arguments have been clarifie

    A Structural Approach to Tree Decompositions of Knots and Spatial Graphs

    Get PDF
    Knots are commonly represented and manipulated via diagrams, which are decorated planar graphs. When such a knot diagram has low treewidth, parameterized graph algorithms can be leveraged to ensure the fast computation of many invariants and properties of the knot. It was recently proved that there exist knots which do not admit any diagram of low treewidth, and the proof relied on intricate low-dimensional topology techniques. In this work, we initiate a thorough investigation of tree decompositions of knot diagrams (or more generally, diagrams of spatial graphs) using ideas from structural graph theory. We define an obstruction on spatial embeddings that forbids low tree width diagrams, and we prove that it is optimal with respect to a related width invariant. We then show the existence of this obstruction for knots of high representativity, which include for example torus knots, providing a new and self-contained proof that those do not admit diagrams of low treewidth. This last step is inspired by a result of Pardon on knot distortion

    On the tree-width of knot diagrams

    Get PDF
    We show that a small tree-decomposition of a knot diagram induces a small sphere-decomposition of the corresponding knot. This, in turn, implies that the knot admits a small essential planar meridional surface or a small bridge sphere. We use this to give the first examples of knots where any diagram has high tree-width. This answers a question of Burton and of Makowsky and Mari\~no.Comment: 14 pages, 6 figures. V2: Minor updates to expositio

    SDDs are Exponentially More Succinct than OBDDs

    Full text link
    Introduced by Darwiche (2011), sentential decision diagrams (SDDs) are essentially as tractable as ordered binary decision diagrams (OBDDs), but tend to be more succinct in practice. This makes SDDs a prominent representation language, with many applications in artificial intelligence and knowledge compilation. We prove that SDDs are more succinct than OBDDs also in theory, by constructing a family of boolean functions where each member has polynomial SDD size but exponential OBDD size. This exponential separation improves a quasipolynomial separation recently established by Razgon (2013), and settles an open problem in knowledge compilation

    Parameterized Complexity of Quantum Knot Invariants

    Get PDF
    We give a general fixed parameter tractable algorithm to compute quantum invariants of links presented by planar diagrams, whose complexity is singly exponential in the carving-width (or the tree-width) of the diagram. In particular, we get a O(N^{3/2 cw} poly(n)) ? N^O(?n) time algorithm to compute any Reshetikhin-Turaev invariant - derived from a simple Lie algebra ? - of a link presented by a planar diagram with n crossings and carving-width cw, and whose components are coloured with ?-modules of dimension at most N. For example, this includes the N^{th}-coloured Jones polynomial
    • …
    corecore