24 research outputs found

    Recent advances in algorithmic problems for semigroups

    Full text link
    In this article we survey recent progress in the algorithmic theory of matrix semigroups. The main objective in this area of study is to construct algorithms that decide various properties of finitely generated subsemigroups of an infinite group GG, often represented as a matrix group. Such problems might not be decidable in general. In fact, they gave rise to some of the earliest undecidability results in algorithmic theory. However, the situation changes when the group GG satisfies additional constraints. In this survey, we give an overview of the decidability and the complexity of several algorithmic problems in the cases where GG is a low-dimensional matrix group, or a group with additional structures such as commutativity, nilpotency and solvability.Comment: survey article for SIGLOG New

    The Complexity of Knapsack Problems in Wreath Products

    Get PDF
    We prove new complexity results for computational problems in certain wreath products of groups and (as an application) for free solvable group. For a finitely generated group we study the so-called power word problem (does a given expression u1k1…udkdu_1^{k_1} \ldots u_d^{k_d}, where u1,…,udu_1, \ldots, u_d are words over the group generators and k1,…,kdk_1, \ldots, k_d are binary encoded integers, evaluate to the group identity?) and knapsack problem (does a given equation u1x1…udxd=vu_1^{x_1} \ldots u_d^{x_d} = v, where u1,…,ud,vu_1, \ldots, u_d,v are words over the group generators and x1,…,xdx_1,\ldots,x_d are variables, has a solution in the natural numbers). We prove that the power word problem for wreath products of the form G≀ZG \wr \mathbb{Z} with GG nilpotent and iterated wreath products of free abelian groups belongs to TC0\mathsf{TC}^0. As an application of the latter, the power word problem for free solvable groups is in TC0\mathsf{TC}^0. On the other hand we show that for wreath products G≀ZG \wr \mathbb{Z}, where GG is a so called uniformly strongly efficiently non-solvable group (which form a large subclass of non-solvable groups), the power word problem is coNP\mathsf{coNP}-hard. For the knapsack problem we show NP\mathsf{NP}-completeness for iterated wreath products of free abelian groups and hence free solvable groups. Moreover, the knapsack problem for every wreath product G≀ZG \wr \mathbb{Z}, where GG is uniformly efficiently non-solvable, is Ξ£p2\Sigma^2_p-hard

    A Characterization of Wreath Products Where Knapsack Is Decidable

    Get PDF
    The knapsack problem for groups was introduced by Miasnikov, Nikolaev, and Ushakov. It is defined for each finitely generated group GG and takes as input group elements g1,…,gn,g∈Gg_1,\ldots,g_n,g\in G and asks whether there are x1,…,xnβ‰₯0x_1,\ldots,x_n\ge 0 with g1x1β‹―gnxn=gg_1^{x_1}\cdots g_n^{x_n}=g. We study the knapsack problem for wreath products G≀HG\wr H of groups GG and HH. Our main result is a characterization of those wreath products G≀HG\wr H for which the knapsack problem is decidable. The characterization is in terms of decidability properties of the indiviual factors GG and HH. To this end, we introduce two decision problems, the intersection knapsack problem and its restriction, the positive intersection knapsack problem. Moreover, we apply our main result to H3(Z)H_3(\mathbb{Z}), the discrete Heisenberg group, and to Baumslag-Solitar groups BS(1,q)\mathsf{BS}(1,q) for qβ‰₯1q\ge 1. First, we show that the knapsack problem is undecidable for G≀H3(Z)G\wr H_3(\mathbb{Z}) for any Gβ‰ 1G\ne 1. This implies that for Gβ‰ 1G\ne 1 and for infinite and virtually nilpotent groups HH, the knapsack problem for G≀HG\wr H is decidable if and only if HH is virtually abelian and solvability of systems of exponent equations is decidable for GG. Second, we show that the knapsack problem is decidable for G≀BS(1,q)G\wr\mathsf{BS}(1,q) if and only if solvability of systems of exponent equations is decidable for GG
    corecore