43 research outputs found

    Hadamard Equiangular Tight Frames

    Get PDF
    An equiangular tight frame (ETF) is a type of optimal packing of lines in Euclidean space. They are often represented as the columns of a short, fat matrix. In certain applications we want this matrix to be flat, that is, have the property that all of its entries have modulus one. In particular, real flat ETFs are equivalent to self-complementary binary codes that achieve the Grey-Rankin bound. Some flat ETFs are (complex) Hadamard ETFs, meaning they arise by extracting rows from a (complex) Hadamard matrix. These include harmonic ETFs, which are obtained by extracting the rows of a character table that correspond to a difference set in the underlying finite abelian group. In this paper, we give some new results about flat ETFs. One of these results gives an explicit Naimark complement for all Steiner ETFs, which in turn implies that all Kirkman ETFs are possibly-complex Hadamard ETFs. This in particular produces a new infinite family of real flat ETFs. Another result establishes an equivalence between real flat ETFs and certain types of quasi-symmetric designs, resulting in a new infinite family of such designs

    Coherence Optimization and Best Complex Antipodal Spherical Codes

    Full text link
    Vector sets with optimal coherence according to the Welch bound cannot exist for all pairs of dimension and cardinality. If such an optimal vector set exists, it is an equiangular tight frame and represents the solution to a Grassmannian line packing problem. Best Complex Antipodal Spherical Codes (BCASCs) are the best vector sets with respect to the coherence. By extending methods used to find best spherical codes in the real-valued Euclidean space, the proposed approach aims to find BCASCs, and thereby, a complex-valued vector set with minimal coherence. There are many applications demanding vector sets with low coherence. Examples are not limited to several techniques in wireless communication or to the field of compressed sensing. Within this contribution, existing analytical and numerical approaches for coherence optimization of complex-valued vector spaces are summarized and compared to the proposed approach. The numerically obtained coherence values improve previously reported results. The drawback of increased computational effort is addressed and a faster approximation is proposed which may be an alternative for time critical cases

    Constructions of biangular tight frames and their relationships with equiangular tight frames

    Full text link
    We study several interesting examples of Biangular Tight Frames (BTFs) - basis-like sets of unit vectors admitting exactly two distinct frame angles (ie, pairwise absolute inner products) - and examine their relationships with Equiangular Tight Frames (ETFs) - basis-like systems which admit exactly one frame angle. We demonstrate a smooth parametrization BTFs, where the corresponding frame angles transform smoothly with the parameter, which "passes through" an ETF answers two questions regarding the rigidity of BTFs. We also develop a general framework of so-called harmonic BTFs and Steiner BTFs - which includes the equiangular cases, surprisingly, the development of this framework leads to a connection with the famous open problem(s) regarding the existence of Mersenne and Fermat primes. Finally, we construct a (chordally) biangular tight set of subspaces (ie, a tight fusion frame) which "Pl\"ucker embeds" into an ETF.Comment: 19 page
    corecore