148 research outputs found

    Increase of Singularity-Free Zones in the Workspace of Parallel Manipulators Using Mechanisms of Variable Structure

    Get PDF
    International audienceThis paper is focused on the study of singularity of planar parallel manipulators taking into account the force transmission, i.e. study of singularity of planar manipulator by introducing the force transmission factor. Thus the singularity zones in the workspace of the manipulator are defined not only by kinematic criterions from the theoretical perfect model of the manipulator but also by the quality of force transmission. For this purpose, the pressure angle is used as an indicator of force transmission. The optimal control of the pressure angle for a given trajectory of the manipulator is realized by means of legs with variable structure. The suggested procedure to determination of the optimal structure of the planar parallel manipulator 3-RPR is illustrated by two numerical simulations

    Error Modeling and Design Optimization of Parallel Manipulators

    Get PDF

    Design, analysis and kinematic control of highly redundant serial robotic arms

    Get PDF
    The use of robotic manipulators in industry has grown in the last decades to improve and speed up industrial processes. Industrial manipulators started to be investigated for machining tasks since they can cover larger workspaces, increasing the range of achievable operations and improving flexibility. The company Nimbl’Bot developed a new mechanism, or module, to build stiffer flexible serial modular robots for machining applications. This manipulator is a kinematic redundant robot with 21 degrees of freedom. This thesis thoroughly analysis the Nimbl’Bot robot features and is divided into three main topics. The first topic regards using a task priority kinematic redundancy resolution algorithm for the Nimbl’Bot robot tracking trajectory while optimizing its kinetostatic performances. The second topic is the kinematic redundant robot design optimization with respect to a desired application and its kinetostatic performance. For the third topic, a new workspace determination algorithm is proposed for kinematic redundant manipulators. Several simulation tests are proposed and tested on some Nimbl’Bot robot designs for each subjects

    On the Dynamic Properties of Flexible Parallel Manipulators in the Presence of Type 2 Singularities

    Get PDF
    International audienceIn the present paper, we expand information about the conditions for passing through Type 2 singular configurations of a parallel manipulator. It is shown that any parallel manipulator can cross the singular configurations via an optimal control permitting the favourable force distribution, i.e. the wrench applied on the end-effector by the legs and external efforts must be reciprocal to the twist along the direction of the uncontrollable motion. The previous studies have proposed the optimal control conditions for the manipulators with rigid links and flexible actuated joints. The different polynomial laws have been obtained and validated for each examined case. The present study considers the conditions for passing through Type 2 singular configurations for the parallel manipulators with flexible links. By computing the inverse dynamic model of a general flexible parallel robot, the necessary conditions for passing through Type 2 singular configurations are deduced. The suggested approach is illustrated by a 5R parallel manipulator with flexible elements and joints. It is shown that a 16 th order polynomial law is necessary for the optimal force generation. The obtained results are validated by numerical simulations carried out using the software ADAMS

    On The Dynamic Properties of Flexible Parallel Manipulators in the Presence of Payload and Type 2 Singularities

    Get PDF
    International audienceIt is known that a parallel manipulator at a singular configuration can gain one or more degrees of freedom and become uncontrollable. In our recent work [1], the dynamic properties of rigid-link parallel manipulators, in the presence of Type 2 singularities, have been studied. It was shown that any parallel manipulator can pass through the singular positions without perturbation of motion if the wrench applied on the end-effector by the legs and external efforts is orthogonal to the twist along the direction of the uncontrollable motion. This condition was obtained using symbolic approach based on the inverse dynamics and the study of the Lagrangian of a general rigid-link parallel manipulator. It was validated by experimental tests carried out on the prototype of a four-degrees-of-freedom parallel manipulator. However, it is known that the flexibility of the mechanism may not always been neglected. Indeed, for robots, joint flexibility can be the main source contributing to overall manipulator flexibility and can lead to trajectory distortion. Therefore, in our second paper [2], the condition of passing through a Type 2 singularity for parallel manipulators with flexible joints has been studied. In the present paper, we expand information about the dynamic properties of parallel manipulators in the presence of Type 2 singularity by including in the studied problem the link flexibility and the payload. The suggested technique is illustrated by a 5R parallel manipulator with flexible elements (actuated joints and moving links) and a payload. The obtained results are validated by numerical simulations carried out using the software ADAMS

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Comparison of 3-RPR Planar Parallel Manipulators with regard to their Dexterity and Sensitivity to Geometric Uncertainties

    Get PDF
    International audienceThis paper deals with the sensitivity analysis of 3-RPR planar parallel manipulators. First, the manipulators under study as well as their degeneracy conditions are presented. Then, an optimization problem is formulated in order to obtain their maximal regular dexterous workspace. Moreover, the sensitivity coefficients of the pose of the manipulator moving platform to variations in the geometric parameters and in the actuated variables are expressed algebraically. Two aggregate sensitivity indices are determined, one related to the orientation of the manipulator moving platform and another one related to its position. Then, we compare two non-degenerate and two degenerate 3-R\underline{P}R planar parallel manipulators with regard to their dexterity, workspace size and sensitivity. Finally, two actuating modes are compared with regard to their sensitivity
    • …
    corecore