597 research outputs found

    State-of-the-Art of Hand Exoskeleton Systems

    Get PDF
    This paper deals with the analysis of the state-of-the-art of robotic hand exoskeletons (updated at May 2011), which is intended as the first step of a designing activity. A large number of hand exoskeletons (both products and prototypes) that feature some common characteristics and many special peculiarities are reported in the literature. Indeed, in spite of very similar functionalities, different hand exoskeletons can be extremely different for the characteristics of their mechanism architectures, control systems and working principles. The aim of this paper is to provide the reader with a complete and schematic picture of the state-of-the-art of hand exoskeletons. The focus is placed on the description of the main aspects that are involved in the exoskeleton design such as the system kinematics, the actuator systems, the transmission parts and the control schemes. Additionally, the critical issues provided by the literature analysis are discussed in order to enlighten the differences and the common features of different practical solutions. This paper may help to understand both the reasons why certain solutions are proposed for the different applications and the advantages and drawbacks of the different designs proposed in the literature. The motivation of this study is the need to design a new hand exoskeleton for rehabilitation purposes

    Tele-operated high speed anthropomorphic dextrous hands with object shape and texture identification

    Get PDF
    This paper reports on the development of two number of robotic hands have been developed which focus on tele-operated high speed anthropomorphic dextrous robotic hands. The aim of developing these hands was to achieve a system that seamlessly interfaced between humans and robots. To provide sensory feedback, to a remote operator tactile sensors were developed to be mounted on the robotic hands. Two systems were developed, the first, being a skin sensor capable of shape reconstruction placed on the palm of the hand to feed back the shape of objects grasped and the second is a highly sensitive tactile array for surface texture identification

    DEVELOPMENT OF A SOFT PNEUMATIC ACTUATOR FOR MODULAR ROBOTIC MECHANISMS

    Get PDF
    Soft robotics is a widely and rapidly growing field of research today. Soft pneumatic actuators, as a fundamental element in soft robotics, have gained huge popularity and are being employed for the development of soft robots. During the last decade, a variety of hyper-elastic robotic systems have been realized. As the name suggests, such robots are made up of soft materials, and do not have any underlying rigid mechanical structure. These robots are actuated employing various methods like pneumatic, electroactive, jamming etc. Generally, in order to achieve a desired mechanical response to produce required actuation or manipulation, two or more materials having different stiffness are utilized to develop a soft robot. However, this method introduces complications in the fabrication process as well as in further design flexibility and modifications. The current work presents a design scheme of a soft robotic actuator adapting an easier fabrication approach, which is economical and environment friendly as well. The purpose is the realization of a soft pneumatic actuator having functional ability to produce effective actuation, and which is further employable to develop modular and scalable mechanisms. That infers to scrutinize the profile and orientation of the internal actuation cavity and the outer shape of viii the actuator. Utilization of a single material for this actuator has been considered to make this design scheme convenient. A commercial silicone rubber was selected which served for an economical process both in terms of the cost as well as its accommodating fabrication process through molding. In order to obtain the material behavior, \u2018Ansys Workbench 17.1 R \u2019 has been used. Cubic outline for the actuator aided towards the realization of a body shape which can easily be engaged for the development of modular mechanisms employing multiple units. This outer body shape further facilitates to achieve the stability and portability of the actuator. The soft actuator has been named \u2018Soft Cubic Module\u2019 based on its external cubic shape. For the internal actuation cavity design, various shapes, such as spherical, elliptical and cylindrical, were examined considering their different sizes and orientations within the cubic module. These internal cavities were simulated in order to achieve single degree of freedom actuation. That means, only one face of the cube is principally required to produce effective deformation. \u2018Creo Perametric 3.0 M 130\u2019 has been used to design the model and to evaluate the performance of actuation cavities in terms of effective deformation and the resulting von-mises stress. Out of the simulated profiles, cylindrical cavity with desired outcomes has been further considered to design the soft actuator. \u2018Ansys Workbench 17.1 R \u2019 environment was further used to assess the performance of cylindrical actuation cavity. Evaluation in two different simulation environments helped to validate the initially achieved results. The developed soft cubic actuator was then employed to develop different mechanisms in a single unit configuration as well as multi-unit robotic system developments. This design scheme is considered as the first tool to investigate its capacity to perform certain given tasks in various configurations. Alongside its application as a single unit gripper and a two unit bio-mimetic crawling mechanism, this soft actuator has been employed to realize a four degree ix of freedom robotic mechanism. The formation of this primitive soft robotic four axis mechanism is being further considered to develop an equivalent mechanism similar to the well known Stewart platform, with advantages of compactness, simpler kinematics design, easier control, and lesser cost. Overall, the accomplished results indicate that the design scheme of Soft Cubic Module is helpful in realizing a simple and cost-effective soft pneumatic actuator which is modular and scalable. Another favourable point of this scheme is the use of a single material with convenient fabrication and handling

    Ground Robotic Hand Applications for the Space Program study (GRASP)

    Get PDF
    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time

    Soft manipulators and grippers: A review

    Get PDF
    Soft robotics is a growing area of research which utilizes the compliance and adaptability of soft structures to develop highly adaptive robotics for soft interactions. One area in which soft robotics has the ability to make significant impact is in the development of soft grippers and manipulators. With an increased requirement for automation, robotics systems are required to perform task in unstructured and not well defined environments; conditions which conventional rigid robotics are not best suited. This requires a paradigm shift in the methods and materials used to develop robots such that they can adapt to and work safely in human environments. One solution to this is soft robotics, which enables soft interactions with the surroundings while maintaining the ability to apply significant force. This review paper assesses the current materials and methods, actuation methods and sensors which are used in the development of soft manipulators. The achievements and shortcomings of recent technology in these key areas are evaluated, and this paper concludes with a discussion on the potential impacts of soft manipulators on industry and society

    A review on design of upper limb exoskeletons

    Get PDF

    MODELLING AND CONTROL OF MULTI-FINGERED ROBOT HAND USING INTELLIGENT TECHNIQUES

    Get PDF
    Research and development of robust multi-fingered robot hand (MFRH) have been going on for more than three decades. Yet few can be found in an industrial application. The difficulties stem from many factors, one of which is that the lack of general and effective control techniques for the manipulation of robot hand. In this research, a MFRH with five fingers has been proposed with intelligent control algorithms. Initially, mathematical modeling for the proposed MFRH has been derived to find the Forward Kinematic, Inverse Kinematic, Jacobian, Dynamics and the plant model. Thereafter, simulation of the MFRH using PID controller, Fuzzy Logic Controller, Fuzzy-PID controller and PID-PSO controller has been carried out to gauge the system performance based parameters such rise time, settling time and percent overshoot

    MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics

    Full text link
    El libro de actas recoge las aportaciones de los autores a través de los correspondientes artículos a la Dinámica de Sistemas Multicuerpo y la Mecatrónica (Musme). Estas disciplinas se han convertido en una importante herramienta para diseñar máquinas, analizar prototipos virtuales y realizar análisis CAD sobre complejos sistemas mecánicos articulados multicuerpo. La dinámica de sistemas multicuerpo comprende un gran número de aspectos que incluyen la mecánica, dinámica estructural, matemáticas aplicadas, métodos de control, ciencia de los ordenadores y mecatrónica. Los artículos recogidos en el libro de actas están relacionados con alguno de los siguientes tópicos del congreso: Análisis y síntesis de mecanismos ; Diseño de algoritmos para sistemas mecatrónicos ; Procedimientos de simulación y resultados ; Prototipos y rendimiento ; Robots y micromáquinas ; Validaciones experimentales ; Teoría de simulación mecatrónica ; Sistemas mecatrónicos ; Control de sistemas mecatrónicosUniversitat Politècnica de València (2011). MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/13224Archivo delegad

    ReHand - a portable assistive rehabilitation hand exoskeleton

    Get PDF
    This dissertation presents a synthesis of a novel underactuated exoskeleton (namely ReHand2) thought and designed for a task-oriented rehabilitation and/or for empower the human hand. The first part of this dissertation shows the current context about the robotic rehabilitation with a focus on hand pathologies, which influence the hand capability. The chapter is concluded with the presentation of ReHand2. The second chapter describes the human hand biomechanics. Starting from the definition of human hand anatomy, passing through anthropometric data, to taxonomy on hand grasps and finger constraints, both from static and dynamic point of view. In addition, some information about the hand capability are given. The third chapter analyze the current state of the art in hand exoskeleton for rehabilitation and empower tasks. In particular, the chapter presents exoskeleton technologies, from mechanisms to sensors, passing though transmission and actuators. Finally, the current state of the art in terms of prototype and commercial products is presented. The fourth chapter introduces the concepts of underactuation with the basic explanation and the classical notation used typically in the prosthetic field. In addition, the chapter describe also the most used differential elements in the prosthetic, follow by a statical analysis. Moreover typical transmission tree at inter-finger level as well as the intra- finger underactuation are explained . The fifth chapter presents the prototype called ReHand summarizing the device description and explanation of the working principle. It describes also the kinetostatic analysis for both, inter- and the intra-finger modules. in the last section preliminary results obtained with the exoskeleton are shown and discussed, attention is pointed out on prototype’s problems that have carry out at the second version of the device. The sixth chapter describes the evolution of ReHand, describing the kinematics and dynamics behaviors. In particular, for the mathematical description is introduced the notation used in order to analyze and optimize the geometry of the entire device. The introduced model is also implemented in Matlab Simulink environment. Finally, the chapter presents the new features. The seventh chapter describes the test bench and the methodologies used to evaluate the device statical, and dynamical performances. The chapter presents and discuss the experimental results and compare them with simulated one. Finally in the last chapter the conclusion about the ReHand project are proposed as well as the future development. In particular, the idea to test de device in relevant environments. In addition some preliminary considerations about the thumb and the wrist are introduced, exploiting the possibility to modify the entire layout of the device, for instance changing the actuator location

    Design, modeling and implementation of a soft robotic neck for humanoid robots

    Get PDF
    Mención Internacional en el título de doctorSoft humanoid robotics is an emerging field that combines the flexibility and safety of soft robotics with the form and functionality of humanoid robotics. This thesis explores the potential for collaboration between these two fields with a focus on the development of soft joints for the humanoid robot TEO. The aim is to improve the robot’s adaptability and movement, which are essential for an efficient interaction with its environment. The research described in this thesis involves the development of a simple and easily transportable soft robotic neck for the robot, based on a 2 Degree of Freedom (DOF) Cable Driven Parallel Mechanism (CDPM). For its final integration into TEO, the proposed design is later refined, resulting in an efficiently scaled prototype able to face significant payloads. The nonlinear behaviour of the joints, due mainly to the elastic nature of their soft links, makes their modeling a challenging issue, which is addressed in this thesis from two perspectives: first, the direct and inverse kinematic models of the soft joints are analytically studied, based on CDPM mathematical models; second, a data-driven system identification is performed based on machine learning techniques. Both approaches are deeply studied and compared, both in simulation and experimentally. In addition to the soft neck, this thesis also addresses the design and prototyping of a soft arm capable of handling external loads. The proposed design is also tendon-driven and has a morphology with two main bending configurations, which provides more versatility compared to the soft neck. In summary, this work contributes to the growing field of soft humanoid robotics through the development of soft joints and their application to the humanoid robot TEO, showcasing the potential of soft robotics to improve the adaptability, flexibility, and safety of humanoid robots. The development of these soft joints is a significant achievement and the research presented in this thesis paves the way for further exploration and development in this field.La robótica humanoide blanda es un campo emergente que combina la flexibilidad y seguridad de la robótica blanda con la forma y funcionalidad de la robótica humanoide. Esta tesis explora el potencial de colaboración entre estos dos campos centrándose en el desarrollo de una articulación blanda para el cuello del robot humanoide TEO. El objetivo es mejorar la adaptabilidad y el movimiento del robot, esenciales para una interacción eficaz con su entorno. La investigación descrita en esta tesis consiste en el desarrollo de un prototipo sencillo y fácilmente transportable de cuello blando para el robot, basado en un mecanismo paralelo actuado por cable de 2 grados de libertad. Para su integración final en TEO, el diseño propuesto es posteriormente refinado, resultando en un prototipo eficientemente escalado capaz de manejar cargas significativas. El comportamiemto no lineal de estas articulaciones, debido fundamentalmente a la naturaleza elástica de sus eslabones blandos, hacen de su modelado un gran reto, que en esta tesis se aborda desde dos perspectivas diferentes: primero, los modelos cinemáticos directo e inverso de las articulaciones blandas se estudian analíticamente, basándose en modelos matemáticos de mecanismos paralelos actuados por cable; segundo, se aborda el problema de la identificación del sistema mediante técnicas basadas en machine learning. Ambas propuestas se estudian y comparan en profundidad, tanto en simulación como experimentalmente. Además del cuello blando, esta tesis también aborda el diseño de un brazo robótico blando capaz de manejar cargas externas. El diseño propuesto está igualmente basado en accionamiento por tendones y tiene una morfología con dos configuraciones principales de flexión, lo que proporciona una mayor versatilidad en comparación con el cuello robótico blando. En resumen, este trabajo contribuye al creciente campo de la robótica humanoide blanda mediante el desarrollo de articulaciones blandas y su aplicación al robot humanoide TEO, mostrando el potencial de la robótica blanda para mejorar la adaptabilidad, flexibilidad y seguridad de los robots humanoides. El desarrollo de estas articulaciones es una contribución significativa y la investigación presentada en esta tesis allana el camino hacia nuevos desarrollos y retos en este campo.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidenta: Cecilia Elisabet García Cena.- Secretario: Dorin Sabin Copaci.- Vocal: Martin Fodstad Stole
    corecore