9 research outputs found

    Kinematics and Robot Design I, KaRD2018

    Get PDF
    This volume collects the papers published on the Special Issue “Kinematics and Robot Design I, KaRD2018” (https://www.mdpi.com/journal/robotics/special_issues/KARD), which is the first issue of the KaRD Special Issue series, hosted by the open access journal “MDPI Robotics”. The KaRD series aims at creating an open environment where researchers can present their works and discuss all the topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”. KaRD2018 received 22 papers and, after the peer-review process, accepted only 14 papers. The accepted papers cover some theoretical and many design/applicative aspects

    Parallel Robots with Homokinetic Joints:The Zero-Torsion Case

    Get PDF
    A two degree-of-freedom (DOF) homokinetic joint provides the freedom of spatially pointing directions without spinning (zero torsion). In this paper, we investigate structural synthesis of several classes of zero-torsion parallel robots using homokinetic joints

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France

    Symmetric Subspace Motion Generators

    Get PDF
    When moving an object endowed with continuous symmetry, an ambiguity arises in its underlying rigid body transformation, induced by the arbitrariness of the portion of motion that does not change the overall body shape. The functional redundancy caused by continuous symmetry is ubiquitously present in a broad range of robotic applications, including robot machining and haptic interface (revolute symmetry), remote center of motion devices for minimal invasive surgery (line symmetry), and motion modules for hyperredundant robots (plane symmetry). In this paper, we argue that such functional redundancy can be systematically resolved by resorting to symmetric subspaces (SSs) of the special Euclidean group SE(3), which motivates us to systematically investigate the structural synthesis of SS motion generators. In particular, we develop a general synthesis procedure that allows us to generate a wide spectrum of novel mechanisms for use in the applications mentioned

    Contribution à l'étude cinématique et dynamique des machines parallèles

    Get PDF
    This thesis deals with the kinematic and dynamic modelling of limited degree-of-freedom parallel robots. These robots with less than six degrees of freedom are able to carry out several industrial tasks. The main reason of using such robots is to reduce the production costs by using less legs and motors. However, in some cases, these structures can produce a complex motion defined as a simultaneous combination of translation and rotation of the moving platform, which is the case of the Verne parallel module having three translation degrees of freedom. The modelling of this type of robots can prove to be complicated. This report includes five chapters. In the first chapter, a classification of parallel architectures is presented and a state of the art on important notions on kinematics and design of manipulators is exposed. The second and the third chapters are devoted to the kinematic modelling, serial singularity analysis and workspace calculation of the Verne machine. The fourth chapter deals with parallel singularity analysis of limited degrees of freedom robots using Grassmann-Cayley algebra. The geometrical conditions of existence of parallel singularities of three classes of parallel manipulators are found. Finally, the fifth chapter covers the dynamic modelling of limited degree-of-freedom parallel manipulators. A general method based on the Newton-Euler algorithm is developed. The proposed method takes in consideration all the dynamics of these robots including the legs dynamics as well as the mobile platform dynamics.Les travaux présentés dans cette thèse portent sur l’étude cinématique et dynamique des robots parallèles à mobilités restreintes. Ces robots à moins de 6 degrés de liberté permettent d’effectuer de multiples tâches demandées par l’industrie. La raison principale de l’utilisation de ces robots est la volonté de réduire le coût en utilisant moins de jambes et moins de moteurs. Cependant, ces structures peuvent dans certains cas produire un mouvement de la plate-forme contraint par un couplage entre la position et l’orientation comme pour le module parallèle de la machine Verne ayant trois degrés de liberté de translation. Dans ce cas, la modélisation peut s’avérer compliquée. Ce mémoire comporte cinq chapitres. Dans le premier chapitre, une classification des architectures parallèles est présentée et des notions importantes liées à la cinématique et à la conception des manipulateurs sont exposées. Les deuxième et troisième chapitres sont consacrés à la modélisation géométrique, à l’étude des singularités sérielles et au calcul de l’espace de travail de la machine Verne. Le quatrième chapitre traite les singularités parallèles des manipulateurs à mobilités restreintes en utilisant l’algèbre de Grassmann-Cayley. Les conditions géométriques d’existence des singularités pour trois classes de manipulateurs sont trouvées. Les chaînes de ces manipulateurs transmettent des forces et/ou couples à la plate-forme mobile. Finalement, le cinquième chapitre concerne la modélisation dynamique des manipulateurs à mobilités restreintes. Une méthode générale basée sur les algorithmes de type Newton-Euler est développée. La méthode proposée prend en compte la dynamique des jambes et de la plate-forme. Nous obtenons ainsi des modèles dynamiques complets de ces robots

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Modular and Analytical Methods for Solving Kinematics and Dynamics of Series-Parallel Hybrid Robots

    Get PDF
    While serial robots are known for their versatility in applications, larger workspace, simpler modeling and control, they have certain disadvantages like limited precision, lower stiffness and poor dynamic characteristics in general. A parallel robot can offer higher stiffness, speed, accuracy and payload capacity, at the downside of a reduced workspace and a more complex geometry that needs careful analysis and control. To bring the best of the two worlds, parallel submechanism modules can be connected in series to achieve a series-parallel hybrid robot with better dynamic characteristics and larger workspace. Such a design philosophy is being used in several robots not only at DFKI (for e.g., Mantis, Charlie, Recupera Exoskeleton, RH5 humanoid etc.) but also around the world, for e.g. Lola (TUM), Valkyrie (NASA), THOR (Virginia Tech.) etc.These robots inherit the complexity of both serial and parallel architectures. Hence, solving their kinematics and dynamics is challenging because they are subjected to additional geometric loop closure constraints. Most approaches in multi-body dynamics adopt numerical resolution of these constraints for the sake of generality but may suffer from inaccuracy and performance issues. They also do not exploit the modularity in robot design. Further, closed loop systems can have variable mobility, different assembly modes and can impose redundant constraints on the equations of motion which deteriorates the quality of many multi-body dynamics solvers. Very often only a local view to the system behavior is possible. Hence, it is interesting for geometers or kinematics researchers, to study the analytical solutions to geometric problems associated with a specific type of parallel mechanism and their importance over numerical solutions is irrefutable. Techniques such as screw theory, computational algebraic geometry, elimination and continuation methods are popular in this domain. But this domain specific knowledge is often underrepresented in the design of model based kinematics and dynamics software frameworks. The contributions of this thesis are two-fold. Firstly, a rigorous and comprehensive kinematic analysis is performed for the novel parallel mechanisms invented recently at DFKI-RIC such as RH5 ankle mechanism and Active Ankle using approaches from computational algebraic geometry and screw theory. Secondly, the general idea of a modular software framework called Hybrid Robot Dynamics (HyRoDyn) is presented which can be used to solve the geometry, kinematics and dynamics of series-parallel hybrid robotic systems with the help of a software database which stores the analytical solutions for parallel submechanism modules in a configurable and unit testable manner. HyRoDyn approach is suitable for both high fidelity simulations and real-time control of complex series-parallel hybrid robots. The results from this thesis has been applied to two robotic systems namely Recupera-Reha exoskeleton and RH5 humanoid. The aim of this software tool is to assist both designers and control engineers in developing complex robotic systems of the future. Efficient kinematic and dynamic modeling can lead to more compliant behavior, better whole body control, walking and manipulating capabilities etc. which are highly desired in the present day and future robotic applications

    Kinematics analysis of a class of spherical PKMs by projective angles

    Get PDF
    This paper presents the kinematics analysis of a class of spherical PKMs Parallel Kinematics Machines exploiting a novel approach. The analysis takes advantage of the properties of the projective angles, which are a set of angular conventions of which their properties have only recently been presented. Direct, inverse kinematics and singular configurations are discussed. The analysis, which results in the solution of easy equations, is developed at position, velocity and acceleration level. © 2018 by the authors
    corecore