110 research outputs found

    Motion coordination of a dual-arm mobile manipulator

    Get PDF
    The objective of the thesis is to create and implement a generic and modular layer, which encapsulates and coordinates the entire movement of the individual robots that the Mobile Anthropomorphic Dual-Arm Robot (MADAR) platform is made of, to used it in a task and motion planning research framework. As each device has different characteristics and functionalities, is it really important to take them into consideration when a coordinated and synchronized motion planning is wanted. This report tackles two main problems, first, the development of the necessary software for managing the hardware, and second, the synchronization and the control of the set of Real Time (RT) systems. The project uses Robot Operating Systems (ROS), which is a robotic software framework, in a clear and transparent way as a tool to develop the solution for the real hardware motion and communication problems. The framework created enables the user to interact easily with the available functionalities and services that expose the platform. To conclude, using the advantages that the presented solution offers, the project is able to complete a motion planning where the user can have a clear idea of the internal behavior of the involved systems and keep it under controlObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructur

    Effects of temperature and mounting configuration on the dynamic parameters identification of industrial robots

    Get PDF
    Dynamic parameters are crucial for the definition of high-fidelity models of industrial manipulators. However, since they are often partially unknown, a mathematical model able to identify them is discussed and validated with the UR3 and the UR5 collaborative robots from Universal Robots. According to the acquired experimental data, this procedure allows for reducing the error on the estimated joint torques of about 90% with respect to the one obtained using only the information provided by the manufacturer. The present research also highlights how changes in the robot operating conditions affect its dynamic behavior. In particular, the identification process has been applied to a data set obtained commanding the same trajectory multiple times to both robots under rising joints temperatures. Average reductions of the viscous friction coefficients of about 20% and 17% for the UR3 and the UR5 robots, respectively, have been observed. Moreover, it is shown how the manipulator mounting configuration affects the number of the base dynamic parameters necessary to properly estimate the robots’ joints torques. The ability of the proposed model to take into account different mounting configurations is then verified by performing the identification procedure on a data set generated through a digital twin of a UR5 robot mounted on the ceiling

    A comprehensive performance evaluation of different mobile manipulators used as displaceable 3D printers of building elements for the construction industry

    Get PDF
    The construction industry is currently technologically challenged to incorporate new developments for enhancing the process, such as the use of 3D printing for complex building structures,which is the aim of this brief. To do so, we show a systematic study regarding the usability and performance of mobile manipulators as displaceable 3D printing machinery in construction sites,with emphasis on the three main different existing mobile platforms: the car-like, the unicycleand the omnidirectional (mecanum wheeled), with an UR5 manipulator on them. To evaluate its performance, we propose the printing of the following building elements: helical, square, circular and mesh, with different sizes. As metrics, we consider the total control effort observed in the robots and the total tracking error associated with the energy consumed in the activity to get a more sustainable process. In addition, to further test our work, we constrained the robot workspace thus resemblingreal life construction sites. In general, the statistical results show that the omnidirectional platform presents the best results –lowest tracking error and lowest control effort– for circular, helicoidal and mesh building elements; and car-like platform shows the best results for square-like building element. Then,an innovative performance analysis is achieved for the printing of building elements, with a contribution to the reduction of energy consumptio

    Kinematic optimization for the design of a collaborative robot end-effector for tele-echography

    Get PDF
    Tele-examination based on robotic technologies is a promising solution to solve the current worsening shortage of physicians. Echocardiography is among the examinations that would benefit more from robotic solutions. However, most of the state-of-the-art solutions are based on the development of specific robotic arms, instead of exploiting COTS (commercial-off-the-shelf) arms to reduce costs and make such systems affordable. In this paper, we address this problem by studying the design of an end-effector for tele-echography to be mounted on two popular and low-cost collaborative robots, i.e., the Universal Robot UR5, and the Franka Emika Panda. In the case of the UR5 robot, we investigate the possibility of adding a seventh rotational degree of freedom. The design is obtained by kinematic optimization, in which a manipulability measure is an objective function. The optimization domain includes the position of the patient with regards to the robot base and the pose of the end-effector frame. Constraints include the full coverage of the examination area, the possibility to orient the probe correctly, have the base of the robot far enough from the patient’s head, and a suitable distance from singularities. The results show that adding a degree of freedom improves manipulability by 65% and that adding a custom-designed actuated joint is better than adopting a native seven-degrees-freedom robot

    Identification of a UR5 collaborative robot dynamic parameters

    Get PDF
    The present paper describes an algorithm for the identification of the dynamic parameters of an industrial robot. This approach is based on the possibility to write robot dynamics in a linear form with respect to a specific set of dynamic parameters. To properly detect them, the coefficients of a 5th order Fast Fourier Series (FFS) trajectory have been optimized using a genetic algorithm. Such identification trajectory has been then commanded to a UR5 collaborative robot from Universal Robots and experimental joints torques have been recorded at a frequency of 125 Hz. Base dynamic parameters were identified using least square errors optimization reaching low standard deviations. The algorithm has been validated with a second persistent trajectory with good results. Temperature effects on friction coefficients have been analyzed by running two identification processes: one just after the first power-up of the robot and the other one after a half an hour warm-up

    Noncollocated proprioceptive sensing for lightweight flexible robotic manipulators

    Get PDF
    This article presents the design of a noncollocated feedback system for flexible serial manipulators. The device is a passive serial chain of encoders and lightweight links, mounted in parallel with the manipulator. This measuring arm effectively decouples the manipulator's proprioception from its actuators by providing information on the actual end effector pose, accounting for both joint and link flexibility. The kinematic redundancy of the measuring chain allows for safe operation in the context of human–robot interaction. A simple yet effective error model is introduced to assess the suitability of the proposed sensor system in the context of robotic control. The practicality of the device is first demonstrated by building a physical joint-encoder assembly and a simplified planar measuring arm prototype. With this additional feedback, a task-space position controller is devised and tested in simulation. Finally, the simulation results are validated with an experimental 3-DoF lightweight manipulator prototype equipped with a five-joint measuring arm

    Adaptive Obstacle Avoidance for a Class of Collaborative Robots

    Get PDF
    In a human–robot collaboration scenario, operator safety is the main problem and must be guaranteed under all conditions. Collision avoidance control techniques are essential to improve operator safety and robot flexibility by preventing impacts that can occur between the robot and humans or with objects inadvertently left within the operational workspace. On this basis, collision avoidance algorithms for moving obstacles are presented in this paper: inspired by algorithms already developed by the authors for planar manipulators, algorithms are adapted for the 6-DOF collaborative manipulators by Universal Robots, and some new contributions are introduced. First, in this work, the safety region wrapping each link of the manipulator assumes a cylindrical shape whose radius varies according to the speed of the colliding obstacle, so that dynamical obstacles are avoided with increased safety regions in order to reduce the risk, whereas fixed obstacles allow us to use smaller safety regions, facilitating the motion of the robot. In addition, three different modalities for the collision avoidance control law are proposed, which differ in the type of motion admitted for the perturbation of the end-effector: the general mode allows for a 6-DOF perturbation, but restrictions can be imposed on the orientation part of the avoidance motion using 4-DOF or 3-DOF modes. In order to demonstrate the effectiveness of the control strategy, simulations with dynamic and fixed obstacles are presented and discussed. Simulations are also used to estimate the required computational effort in order to verify the transferability to a real system

    Control of Flexible Manipulator Robots Based on Dynamic Confined Space of Velocities: Dynamic Programming Approach

    Get PDF
    Linear Parameter Varying models-based Model Predictive Control (LPV-MPC) has stood out in manipulator robots because it presents well-rejection to dynamic uncertainties in flexible joints. However, it has become too weak when the MPC's optimization problem does not include kinematic constraints-based conditions. This paper uses dynamic confined space of velocities (DCSV) to include these conditions as a recursive polytopic constraint, guaranteeing optimal dependency on a simplex scheduling parameter. To this end, the local frame's velocities and torque/force preload of joints (related to violation of kinematic constraints) are associated with different time scale dynamics such that DCSV correlates them as a polytope. So, a classical LPV-MPC will be updated using a dynamic programming approach according to the DCSV-based polytope. As a result, one lemma about DCSV-based recursive polytope and a five-step procedure for two decoupled close-loop schemes with different time scales compose the LPV-MPC proposed method. Numerical validation shows that even for relevant flexibility situations, trajectory tracking performance is improved by tuning finite horizons and optimization problem constraints regarding DCSV's behavior

    Contact force and torque estimation for collaborative manipulators based on an adaptive Kalman filter with variable time period.

    Get PDF
    Contact force and torque sensing approaches enable manipulators to cooperate with humans and to interact appropriately with unexpected collisions. In this thesis, various moving averages are investigated and Weighted Moving Averages and Hull Moving Average are employed to generate a mode-switching moving average to support force sensing. The proposed moving averages with variable time period were used to reduce the effects of measured motor current noise and thus provide improved confidence in joint output torque estimation. The time period of the filter adapts continuously to achieve an optimal trade-off between response time and precision of estimation in real-time. An adaptive Kalman filter that consists of the proposed moving averages and the conventional Kalman filter is proposed. Calibration routines for the adaptive Kalman filter interpret the measured motor current noise and errors in the speed data from the individual joints into. The combination of the proposed adaptive Kalman filter with variable time period and its calibration method facilitates force and torque estimation without direct measurement via force/torque sensors. Contact force/torque sensing and response time assessments from the proposed approach are performed on both the single Universal Robot 5 manipulator and the collaborative UR5 arrangement (dual-arm robot) with differing unexpected end effector loads. The combined force and torque sensing method leads to a reduction of the estimation errors and response time in comparison with the pioneering method (55.2% and 20.8 %, respectively), and the positive performance of the proposed approach is further improved as the payload rises. The proposed method can potentially be applied to any robotic manipulators as long as the motor information (current, joint position, and joint velocities) are available. Consequently the cost of implementation will be significantly lower than methods that require load cells
    corecore