123 research outputs found

    Tracking control of redundant mobile manipulator: An RNN based metaheuristic approach

    Get PDF
    In this paper, we propose a topology of Recurrent Neural Network (RNN) based on a metaheuristic optimization algorithm for the tracking control of mobile-manipulator while enforcing nonholonomic constraints. Traditional approaches for tracking control of mobile robots usually require the computation of Jacobian-inverse or linearization of its mathematical model. The proposed algorithm uses a nature-inspired optimization approach to directly solve the nonlinear optimization problem without any further transformation. First, we formulate the tracking control as a constrained optimization problem. The optimization problem is formulated on position-level to avoid the computationally expensive Jacobian-inversion. The nonholonomic limitation is ensured by adding equality constraints to the formulated optimization problem. We then present the Beetle Antennae Olfactory Recurrent Neural Network (BAORNN) algorithm to solve the optimization problem efficiently using very few mathematical operations. We present a theoretical analysis of the proposed algorithm and show that its computational cost is linear with respect to the degree of freedoms (DOFs), i.e., O(m). Additionally, we also prove its stability and convergence. Extensive simulation results are prepared using a simulated model of IIWA14, a 7-DOF industrial-manipulator, mounted on a differentially driven cart. Comparison results with particle swarm optimization (PSO) algorithm are also presented to prove the accuracy and numerical efficiency of the proposed controller. The results demonstrate that the proposed algorithm is several times (around 75 in the worst case) faster in execution as compared to PSO, and suitable for real-time implementation. The tracking results for three different trajectories; circular, rectangular, and rhodonea paths are presented

    Multilayer perceptron adaptive dynamic control of mobile robots : experimental validation

    Get PDF
    This paper presents experimental results acquired from the implementation of an adaptive control scheme for nonholonomic mobile robots, which was recently proposed by the same authors and tested only by simulations. The control system comprises a trajectory tracking kinematic controller, which generates the reference wheel velocities, and a cascade dynamic controller, which estimates the robot's uncertain nonlinear dynamic functions in real-time via a multilayer perceptron neural network. In this manner precise velocity tracking is attained, even in the presence of unknown and/or time-varying dynamics. The experimental mobile robot, designed and built for the purpose of this research, is also presented in this paper.peer-reviewe

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Robust Model Predictive Control for Linear Parameter Varying Systems along with Exploration of its Application in Medical Mobile Robots

    Get PDF
    This thesis seeks to develop a robust model predictive controller (MPC) for Linear Parameter Varying (LPV) systems. LPV models based on input-output display are employed. We aim to improve robust MPC methods for LPV systems with an input-output display. This improvement will be examined from two perspectives. First, the system must be stable in conditions of uncertainty (in signal scheduling or due to disturbance) and perform well in both tracking and regulation problems. Secondly, the proposed method should be practical, i.e., it should have a reasonable computational load and not be conservative. Firstly, an interpolation approach is utilized to minimize the conservativeness of the MPC. The controller is calculated as a linear combination of a set of offline predefined control laws. The coefficients of these offline controllers are derived from a real-time optimization problem. The control gains are determined to ensure stability and increase the terminal set. Secondly, in order to test the system's robustness to external disturbances, a free control move was added to the control law. Also, a Recurrent Neural Network (RNN) algorithm is applied for online optimization, showing that this optimization method has better speed and accuracy than traditional algorithms. The proposed controller was compared with two methods (robust MPC and MPC with LPV model based on input-output) in reference tracking and disturbance rejection scenarios. It was shown that the proposed method works well in both parts. However, two other methods could not deal with the disturbance. Thirdly, a support vector machine was introduced to identify the input-output LPV model to estimate the output. The estimated model was compared with the actual nonlinear system outputs, and the identification was shown to be effective. As a consequence, the controller can accurately follow the reference. Finally, an interpolation-based MPC with free control moves is implemented for a wheeled mobile robot in a hospital setting, where an RNN solves the online optimization problem. The controller was compared with a robust MPC and MPC-LPV in reference tracking, disturbance rejection, online computational load, and region of attraction. The results indicate that our proposed method surpasses and can navigate quickly and reliably while avoiding obstacles

    Design and analysis of Intelligent Navigational controller for Mobile Robot

    Get PDF
    Since last several years requirement graph for autonomous mobile robots according to its virtual application has always been an upward one. Smother and faster mobile robots navigation with multiple function are the necessity of the day. This research is based on navigation system as well as kinematics model analysis for autonomous mobile robot in known environments. To execute and attain introductory robotic behaviour inside environments(e.g. obstacle avoidance, wall or edge following and target seeking) robot uses method of perception, sensor integration and fusion. With the help of these sensors robot creates its collision free path and analyse an environmental map time to time. Mobile robot navigation in an unfamiliar environment can be successfully studied here using online sensor fusion and integration. Various AI algorithm are used to describe overall procedure of mobilerobot navigation and its path planning problem. To design suitable controller that create collision free path are achieved by the combined study of kinematics analysis of motion as well as an artificial intelligent technique. In fuzzy logic approach, a set of linguistic fuzzy rules are generated for navigation of mobile robot. An expert controller has been developed for the navigation in various condition of environment using these fuzzy rules. Further, type-2 fuzzy is employed to simplify and clarify the developed control algorithm more accurately due to fuzzy logic limitations. In addition, recurrent neural network (RNN) methodology has been analysed for robot navigation. Which helps the model at the time of learning stage. The robustness of controller has been checked on Webots simulation platform. Simulation results and performance of the controller using Webots platform show that, the mobile robot is capable for avoiding obstacles and reaching the termination point in efficient manner

    Distributed formation control for manipulator end-effectors

    Get PDF
    We present three classes of distributed formation controllers for achieving and maintaining the 2D/3D formation shape of manipulator end-effectors to cope with different scenarios due to availability of modeling parameters. We firstly present a distributed formation controller for manipulators whose system parameters are perfectly known. The formation control objective is achieved by assigning virtual springs between end-effectors and by adding damping terms at joints, which provides a clear physical interpretation of the proposed solution. Subsequently, we extend it to the case where manipulator kinematic and system parameters are not exactly known. An extra integrator and an adaptive estimator are introduced for gravitational compensation and stabilization, respectively. Simulation results with planar manipulators and with seven degree-of-freedom humanoid manipulator arms are presented to illustrate the effectiveness of the proposed approach.Comment: arXiv admin note: text overlap with arXiv:2103.1459

    A Gradient Neural Network for online Solving the Time-varying Inverse Kinematics Problem of Four-wheel Mobile Robotic Arm

    Get PDF
    No embargo required

    Analysis and Control of Mobile Robots in Various Environmental Conditions

    Get PDF
    The world sees new inventions each day, made to make the lifestyle of humans more easy and luxurious. In such global scenario, the robots have proved themselves to be an invention of great importance. The robots are being used in almost each and every field of the human world. Continuous studies are being done on them to make them simpler and easier to work with. All fields are being unraveled to make them work better in the human world without human interference. We focus on the navigation field of these mobile robots. The aim of this thesis is to find the controller that produces the most optimal path for the robot to reach its destination without colliding or damaging itself or the environment. The techniques like Fuzzy logic, Type 2 fuzzy logic, Neural networks and Artificial bee colony have been discussed and experimented to find the best controller that could find the most optimal path for the robot to reach its goal position. Simulation and Experiments have been done alike to find out the optimal path for the robot
    corecore