397 research outputs found

    Feedback control-based inverse kinematics solvers for a nuclear decommissioning robot

    Get PDF
    The article develops two novel feedback control-based Inverse Kinematics (IK) solvers. They are evaluated for a dual-manipulator mobile robotic system with application to nuclear decommissioning. The first algorithm has similarities to other feedback control based solvers, and borrows ideas from the Cyclic Coordinate Decent and the Jacobian Transpose methods. This yields a particularly straightforward algorithm with tunable Proportional-Integral-Derivative (PID) gains to determine performance. The second approach utilises a discrete-time state space modelling framework to solve the IK problem. Although the second solver is more complex to implement, preliminary simulation results for the case study example, show that it can converge quicker, and has improved immunity to the kinematic singularities that can occur in Jacobian based methods

    A review of friction models in interacting joints for durability design.

    Get PDF
    This paper presents a comprehensive review of friction modelling to provide an understanding of design for durability within interacting systems. Friction is a complex phenomenon and occurs at the interface of two components in relative motion. Over the last several decades, the effects of friction and its modelling techniques have been of significant interests in terms of industrial applications. There is however a need to develop a unified mathematical model for friction to inform design for durability within the context of varying operational conditions. Classical dynamic mechanisms model for the design of control systems has not incorporated friction phenomena due to non-linearity behaviour. Therefore, the tribological performance concurrently with the joint dynamics of a manipulator joint applied in hazardous environments needs to be fully analysed. Previously the dynamics and impact models used in mechanical joints with clearance have also been examined. The inclusion of reliability and durability during the design phase is very important for manipulators which are deployed in harsh environmental and operational conditions. The revolute joint is susceptible to failures such as in heavy manipulators these revolute joints can be represented by lubricated conformal sliding surfaces. The presence of pollutants such as debris and corrosive constituents has the potential to alter the contacting surfaces, would in turn affect the performance of revolute joints, and puts both reliability and durability of the systems at greater risks of failure. Key literature is identified and a review on the latest developments of the science of friction modelling is presented here. This review is based on a large volume of knowledge. Gaps in the relevant field have been identified to capitalise on for future developments. Therefore, this review will bring significant benefits to researchers, academics and industrial professionals

    Octopus-Inspired Grasp-Synergies for Continuum Manipulators

    Get PDF
    Human operation of continuum “continuous-backbone” manipulators remains difficult, because of both the complex kinematics of these manipulators and the need to coordinate their many degrees of freedom. We present a novel synergy-based approach for operator interfaces, by introducing a series of octopus-arm inspired grasp-synergies. These grasp-synergies automatically coordinate the degrees of freedom of the continuum manipulator, allowing an operator to perform kinematically complex grasping motions through simple and intuitive joystick inputs. This effectively reduces the complexity of operation and allows the operator to devote more of his attention to higher-level concerns (e.g. goal, environment). We demonstrate the grasp-synergies interface design in both simulation and hardware using the nine degree of freedom Octarm continuum manipulator

    Legged Robots for Object Manipulation: A Review

    Get PDF
    Legged robots can have a unique role in manipulating objects in dynamic, human-centric, or otherwise inaccessible environments. Although most legged robotics research to date typically focuses on traversing these challenging environments, many legged platform demonstrations have also included "moving an object" as a way of doing tangible work. Legged robots can be designed to manipulate a particular type of object (e.g., a cardboard box, a soccer ball, or a larger piece of furniture), by themselves or collaboratively. The objective of this review is to collect and learn from these examples, to both organize the work done so far in the community and highlight interesting open avenues for future work. This review categorizes existing works into four main manipulation methods: object interactions without grasping, manipulation with walking legs, dedicated non-locomotive arms, and legged teams. Each method has different design and autonomy features, which are illustrated by available examples in the literature. Based on a few simplifying assumptions, we further provide quantitative comparisons for the range of possible relative sizes of the manipulated object with respect to the robot. Taken together, these examples suggest new directions for research in legged robot manipulation, such as multifunctional limbs, terrain modeling, or learning-based control, to support a number of new deployments in challenging indoor/outdoor scenarios in warehouses/construction sites, preserved natural areas, and especially for home robotics.Comment: Preprint of the paper submitted to Frontiers in Mechanical Engineerin

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Development of an assisted-teleoperation system for a dual-manipulator nuclear decommissioning robot

    Get PDF
    This thesis concerns a robotic platform that is being used for research into assisted tele–operation for common nuclear decommissioning tasks, such as remote handling and pipe cutting. The machine consists of dual, seven–function, hydraulically actuated HYDROLEK manipulators mounted (in prior research) on a mobile BROKK base unit. Whilst the original system was operated by remote control, the present thesis focusses on the development of a visual servoing system, in which the user selects the object of interest from an on–screen image, whilst the computer control system determines and implements via feedback control the required position and orientation of the manipulators. Novel research contributions are made in three main areas: (i) the development of a detailed mechanistic model of the system; (ii) the development and preliminary testing in the laboratory of the new assisted–teleoperation user interface; and (iii) the development of improved control systems for joint angle set point tracking, and their systematic, quantitative comparison via simulation and experiment. The mechanistic model builds on previous work, while the main novelty in this thesis relates to the hydraulic component of the model, and the development and evaluation of a multi–objective genetic algorithm framework to identify the unknown parameter values. To improve on the joystick direct teleoperation currently used as standard in the nuclear industry, which is slow and requires extensive operator training, the proposed assisted–teleoperation makes use of a camera mounted on the robot. Focussing on pipe cutting as an example, the new system ensures that one manipulator automatically grasps the user–selected pipe, and appropriately positions the second for a cutting operation. Initial laboratory testing (using a plastic pipe) shows the efficacy of the approach for positioning the manipulators, and suggests that for both experienced and inexperienced users, the task is completed significantly faster than via tele-operation. Finally, classical industrial, fuzzy logic, and novel state dependent parameter approaches to control are developed and compared, with the aim being to determine a relatively simple controller that yields good performance for the hydraulic manipulators. An improved, more structured method of dealing with the dead–zone characteristics is developed and implemented, replacing the rather ad hoc approach that had been utilised in previous research for the same machine
    • …
    corecore