23 research outputs found

    Modular MRI Guided Device Development System: Development, Validation and Applications

    Get PDF
    Since the first robotic surgical intervention was performed in 1985 using a PUMA industrial manipulator, development in the field of surgical robotics has been relatively fast paced, despite the tremendous costs involved in developing new robotic interventional devices. This is due to the clear advantages to augmented a clinicians skill and dexterity with the precision and reliability of computer controlled motion. A natural extension of robotic surgical intervention is the integration of image guided interventions, which give the promise of reduced trauma, procedure time and inaccuracies. Despite magnetic resonance imaging (MRI) being one of the most effective imaging modalities for visualizing soft tissue structures within the body, MRI guided surgical robotics has been frustrated by the high magnetic field in the MRI image space and the extreme sensitivity to electromagnetic interference. The primary contributions of this dissertation relate to enabling the use of direct, live MR imaging to guide and assist interventional procedures. These are the two focus areas: creation both of an integrated MRI-guided development platform and of a stereotactic neural intervention system. The integrated series of modules of the development platform represent a significant advancement in the practice of creating MRI guided mechatronic devices, as well as an understanding of design requirements for creating actuated devices to operate within a diagnostic MRI. This knowledge was gained through a systematic approach to understanding, isolating, characterizing, and circumventing difficulties associated with developing MRI-guided interventional systems. These contributions have been validated on the levels of the individual modules, the total development system, and several deployed interventional devices. An overview of this work is presented with a summary of contributions and lessons learned along the way

    Design, Development, and Evaluation of a Teleoperated Master-Slave Surgical System for Breast Biopsy under Continuous MRI Guidance

    Get PDF
    The goal of this project is to design and develop a teleoperated master-slave surgical system that can potentially assist the physician in performing breast biopsy with a magnetic resonance imaging (MRI) compatible robotic system. MRI provides superior soft-tissue contrast compared to other imaging modalities such as computed tomography or ultrasound and is used for both diagnostic and therapeutic procedures. The strong magnetic field and the limited space inside the MRI bore, however, restrict direct means of breast biopsy while performing real-time imaging. Therefore, current breast biopsy procedures employ a blind targeting approach based on magnetic resonance (MR) images obtained a priori. Due to possible patient involuntary motion or inaccurate insertion through the registration grid, such approach could lead to tool tip positioning errors thereby affecting diagnostic accuracy and leading to a long and painful process, if repeated procedures are required. Hence, it is desired to develop the aforementioned teleoperation system to take advantages of real-time MR imaging and avoid multiple biopsy needle insertions, improving the procedure accuracy as well as reducing the sampling errors. The design, implementation, and evaluation of the teleoperation system is presented in this dissertation. A MRI-compatible slave robot is implemented, which consists of a 1 degree of freedom (DOF) needle driver, a 3-DOF parallel mechanism, and a 2-DOF X-Y stage. This slave robot is actuated with pneumatic cylinders through long transmission lines except the 1-DOF needle driver is actuated with a piezo motor. Pneumatic actuation through long transmission lines is then investigated using proportional pressure valves and controllers based on sliding mode control are presented. A dedicated master robot is also developed, and the kinematic map between the master and the slave robot is established. The two robots are integrated into a teleoperation system and a graphical user interface is developed to provide visual feedback to the physician. MRI experiment shows that the slave robot is MRI-compatible, and the ex vivo test shows over 85%success rate in targeting with the MRI-compatible robotic system. The success in performing in vivo animal experiments further confirm the potential of further developing the proposed robotic system for clinical applications

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Image-guided prostate biopsy robots: A review

    Get PDF
    At present, the incidence of prostate cancer (PCa) in men is increasing year by year. So, the early diagnosis of PCa is of great significance. Transrectal ultrasonography (TRUS)-guided biopsy is a common method for diagnosing PCa. The biopsy process is performed manually by urologists but the diagnostic rate is only 20%–30% and its reliability and accuracy can no longer meet clinical needs. The image-guided prostate biopsy robot has the advantages of a high degree of automation, does not rely on the skills and experience of operators, reduces the work intensity and operation time of urologists and so on. Capable of delivering biopsy needles to pre-defined biopsy locations with minimal needle placement errors, it makes up for the shortcomings of traditional free-hand biopsy and improves the reliability and accuracy of biopsy. The integration of medical imaging technology and the robotic system is an important means for accurate tumor location, biopsy puncture path planning and visualization. This paper mainly reviews image-guided prostate biopsy robots. According to the existing literature, guidance modalities are divided into magnetic resonance imaging (MRI), ultrasound (US) and fusion image. First, the robot structure research by different guided methods is the main line and the actuators and material research of these guided modalities is the auxiliary line to introduce and compare. Second, the robot image-guided localization technology is discussed. Finally, the image-guided prostate biopsy robot is summarized and suggestions for future development are provided

    Medical Robotics for use in MRI Guided Endoscopy

    Get PDF
    Interventional Magnetic Resonance Imaging (MRI) is a developing field that aims to provide intra-operative MRI to a clinician to guide diagnostic or therapeutic medical procedures. MRI provides excellent soft tissue contrast at sub-millimetre resolution in both 2D and 3D without the need for ionizing radiation. Images can be acquired in near real-time for guidance purposes. Operating in the MR environment brings challenges due to the high static magnetic field, switching magnetic field gradients and RF excitation pulses. In addition high field closed bore scanners have spatial constraints that severely limit access to the patient. This thesis presents a system for MRI-guided Endoscopic Retrograde Cholangio-pancreatography (ERCP). This includes a remote actuation system that enables an MRI-compatible endoscope to be controlled whilst the patient is inside the MRI scanner, overcoming the spatial and procedural constraints imposed by the closed scanner bore. The modular system utilises non-magnetic ultrasonic motors and is designed for image-guided user-in-the-loop control. A novel miniature MRI compatible clutch has been incorporated into the design to reduce the need for multiple parallel motors. The actuation system is MRI compatible does not degrade the MR images below acceptable levels. User testing showed that the actuation system requires some degree of training but enables completion of a simulated ERCP procedure with no loss of performance. This was demonstrated using a tailored ERCP simulator and kinematic assessment tool, which was validated with users from a range of skill levels to ensure that it provides an objective measurement of endoscopic skill. Methods of tracking the endoscope in real-time using the MRI scanner are explored and presented here. Use of the MRI-guided ERCP system was shown to improve the operator’s ability to position the endoscope in an experimental environment compared with a standard fluoroscopic-guided system.Open Acces

    Cable-driven parallel robot for transoral laser phonosurgery

    Get PDF
    Transoral laser phonosurgery (TLP) is a common surgical procedure in otolaryngology. Currently, two techniques are commonly used: free beam and fibre delivery. For free beam delivery, in combination with laser scanning techniques, accurate laser pattern scanning can be achieved. However, a line-of-sight to the target is required. A suspension laryngoscope is adopted to create a straight working channel for the scanning laser beam, which could introduce lesions to the patient, and the manipulability and ergonomics are poor. For the fibre delivery approach, a flexible fibre is used to transmit the laser beam, and the distal tip of the laser fibre can be manipulated by a flexible robotic tool. The issues related to the limitation of the line-of-sight can be avoided. However, the laser scanning function is currently lost in this approach, and the performance is inferior to that of the laser scanning technique in the free beam approach. A novel cable-driven parallel robot (CDPR), LaryngoTORS, has been developed for TLP. By using a curved laryngeal blade, a straight suspension laryngoscope will not be necessary to use, which is expected to be less traumatic to the patient. Semi-autonomous free path scanning can be executed, and high precision and high repeatability of the free path can be achieved. The performance has been verified in various bench and ex vivo tests. The technical feasibility of the LaryngoTORS robot for TLP was considered and evaluated in this thesis. The LaryngoTORS robot has demonstrated the potential to offer an acceptable and feasible solution to be used in real-world clinical applications of TLP. Furthermore, the LaryngoTORS robot can combine with fibre-based optical biopsy techniques. Experiments of probe-based confocal laser endomicroscopy (pCLE) and hyperspectral fibre-optic sensing were performed. The LaryngoTORS robot demonstrates the potential to be utilised to apply the fibre-based optical biopsy of the larynx.Open Acces

    Medical SLAM in an autonomous robotic system

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-operative morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilities by observing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted instruments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This thesis addresses the ambitious goal of achieving surgical autonomy, through the study of the anatomical environment by Initially studying the technology present and what is needed to analyze the scene: vision sensors. A novel endoscope for autonomous surgical task execution is presented in the first part of this thesis. Which combines a standard stereo camera with a depth sensor. This solution introduces several key advantages, such as the possibility of reconstructing the 3D at a greater distance than traditional endoscopes. Then the problem of hand-eye calibration is tackled, which unites the vision system and the robot in a single reference system. Increasing the accuracy in the surgical work plan. In the second part of the thesis the problem of the 3D reconstruction and the algorithms currently in use were addressed. In MIS, simultaneous localization and mapping (SLAM) can be used to localize the pose of the endoscopic camera and build ta 3D model of the tissue surface. Another key element for MIS is to have real-time knowledge of the pose of surgical tools with respect to the surgical camera and underlying anatomy. Starting from the ORB-SLAM algorithm we have modified the architecture to make it usable in an anatomical environment by adding the registration of the pre-operative information of the intervention to the map obtained from the SLAM. Once it has been proven that the slam algorithm is usable in an anatomical environment, it has been improved by adding semantic segmentation to be able to distinguish dynamic features from static ones. All the results in this thesis are validated on training setups, which mimics some of the challenges of real surgery and on setups that simulate the human body within Autonomous Robotic Surgery (ARS) and Smart Autonomous Robotic Assistant Surgeon (SARAS) projects

    Medical SLAM in an autonomous robotic system

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-operative morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilities by observing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted instruments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This thesis addresses the ambitious goal of achieving surgical autonomy, through the study of the anatomical environment by Initially studying the technology present and what is needed to analyze the scene: vision sensors. A novel endoscope for autonomous surgical task execution is presented in the first part of this thesis. Which combines a standard stereo camera with a depth sensor. This solution introduces several key advantages, such as the possibility of reconstructing the 3D at a greater distance than traditional endoscopes. Then the problem of hand-eye calibration is tackled, which unites the vision system and the robot in a single reference system. Increasing the accuracy in the surgical work plan. In the second part of the thesis the problem of the 3D reconstruction and the algorithms currently in use were addressed. In MIS, simultaneous localization and mapping (SLAM) can be used to localize the pose of the endoscopic camera and build ta 3D model of the tissue surface. Another key element for MIS is to have real-time knowledge of the pose of surgical tools with respect to the surgical camera and underlying anatomy. Starting from the ORB-SLAM algorithm we have modified the architecture to make it usable in an anatomical environment by adding the registration of the pre-operative information of the intervention to the map obtained from the SLAM. Once it has been proven that the slam algorithm is usable in an anatomical environment, it has been improved by adding semantic segmentation to be able to distinguish dynamic features from static ones. All the results in this thesis are validated on training setups, which mimics some of the challenges of real surgery and on setups that simulate the human body within Autonomous Robotic Surgery (ARS) and Smart Autonomous Robotic Assistant Surgeon (SARAS) projects

    New Mechatronic Systems for the Diagnosis and Treatment of Cancer

    Get PDF
    Both two dimensional (2D) and three dimensional (3D) imaging modalities are useful tools for viewing the internal anatomy. Three dimensional imaging techniques are required for accurate targeting of needles. This improves the efficiency and control over the intervention as the high temporal resolution of medical images can be used to validate the location of needle and target in real time. Relying on imaging alone, however, means the intervention is still operator dependent because of the difficulty of controlling the location of the needle within the image. The objective of this thesis is to improve the accuracy and repeatability of needle-based interventions over conventional techniques: both manual and automated techniques. This includes increasing the accuracy and repeatability of these procedures in order to minimize the invasiveness of the procedure. In this thesis, I propose that by combining the remote center of motion concept using spherical linkage components into a passive or semi-automated device, the physician will have a useful tracking and guidance system at their disposal in a package, which is less threatening than a robot to both the patient and physician. This design concept offers both the manipulative transparency of a freehand system, and tremor reduction through scaling currently offered in automated systems. In addressing each objective of this thesis, a number of novel mechanical designs incorporating an remote center of motion architecture with varying degrees of freedom have been presented. Each of these designs can be deployed in a variety of imaging modalities and clinical applications, ranging from preclinical to human interventions, with an accuracy of control in the millimeter to sub-millimeter range
    corecore