135,531 research outputs found

    Microcomputer Aided Selection Of Robot Manipulators

    Get PDF
    This paper presents two programs for microcomputer aided assessment of the performance of robot manipulators. The first program automatically generates robot models based on user-supplied kinematic parameters. The program also derives a kinematic model that relates the motion of manipulator end-effector to the motion of the joints using the inverse kinematic approach. The approach uses a robust inversion technique that can handle singular conditions as well as joint redundancy. A user can optionally select evaluation of kinematic capabilities of the robot manipulator, such as the ability of the end-effector to reach a specified position and orientation in space or the evaluation of the work space. The second program generates dynamic variables, such as forces and torques, based on user-supplied dynamic parameters and equations of motion of the various joints. Both programs are written for implementation on personal computers. Several runs were carried out to demonstrate the capability and execution times of the two program

    The Glasgow-Maastricht foot model, evaluation of a 26 segment kinematic model of the foot

    Get PDF
    BACKGROUND: Accurately measuring of intrinsic foot kinematics using skin mounted markers is difficult, limited in part by the physical dimensions of the foot. Existing kinematic foot models solve this problem by combining multiple bones into idealized rigid segments. This study presents a novel foot model that allows the motion of the 26 bones to be individually estimated via a combination of partial joint constraints and coupling the motion of separate joints using kinematic rhythms. METHODS: Segmented CT data from one healthy subject was used to create a template Glasgow-Maastricht foot model (GM-model). Following this, the template was scaled to produce subject-specific models for five additional healthy participants using a surface scan of the foot and ankle. Forty-three skin mounted markers, mainly positioned around the foot and ankle, were used to capture the stance phase of the right foot of the six healthy participants during walking. The GM-model was then applied to calculate the intrinsic foot kinematics. RESULTS: Distinct motion patterns where found for all joints. The variability in outcome depended on the location of the joint, with reasonable results for sagittal plane motions and poor results for transverse plane motions. CONCLUSIONS: The results of the GM-model were comparable with existing literature, including bone pin studies, with respect to the range of motion, motion pattern and timing of the motion in the studied joints. This novel model is the most complete kinematic model to date. Further evaluation of the model is warranted

    Coupling structure of multi-field primordial perturbations

    Full text link
    We investigate the coupling relations among perturbations in general multi-field models. We derived the equations of motion for both background and perturbations in a general basis. Within this formalism, we revisit the construction of kinematic orthogonal normal vectors using the successive time derivatives of the background field velocity. We show that the coupling relations among modes in this kinematic basis can be reduced, by employing the background equations of motion for the scalar fields and their high order time derivatives. There are two typical features in the field space: inflationary trajectory and geometry of the potential. Correspondingly, the couplings among modes fall into two categories: one is controlled only by the kinematic quantities, the other involves high order derivatives of the potential. Remarkably, the couplings of the first category, i.e. controlled by the kinematic quantities only, show a "chain" structure. That is, each mode is only coupled to its two neighbour modes.Comment: 20 pages, 1 figur

    Advanced action manipulator system (ADAMS)

    Get PDF
    Manipulator offers improved performance over other models in its category. It features larger force and reach capabilities and is readily convertible for underwater use. Unique kinematic arrangement provides extremely large working envelope. System has six degrees of motion: azimuth joint, shoulder joint, upper arm rotating joint, elbow joint, wrist pitch, and wrist twist

    Hierarchical fuzzy logic based approach for object tracking

    Get PDF
    In this paper a novel tracking approach based on fuzzy concepts is introduced. A methodology for both single and multiple object tracking is presented. The aim of this methodology is to use these concepts as a tool to, while maintaining the needed accuracy, reduce the complexity usually involved in object tracking problems. Several dynamic fuzzy sets are constructed according to both kinematic and non-kinematic properties that distinguish the object to be tracked. Meanwhile kinematic related fuzzy sets model the object's motion pattern, the non-kinematic fuzzy sets model the object's appearance. The tracking task is performed through the fusion of these fuzzy models by means of an inference engine. This way, object detection and matching steps are performed exclusively using inference rules on fuzzy sets. In the multiple object methodology, each object is associated with a confidence degree and a hierarchical implementation is performed based on that confidence degree.info:eu-repo/semantics/publishedVersio

    Learning Articulated Motions From Visual Demonstration

    Full text link
    Many functional elements of human homes and workplaces consist of rigid components which are connected through one or more sliding or rotating linkages. Examples include doors and drawers of cabinets and appliances; laptops; and swivel office chairs. A robotic mobile manipulator would benefit from the ability to acquire kinematic models of such objects from observation. This paper describes a method by which a robot can acquire an object model by capturing depth imagery of the object as a human moves it through its range of motion. We envision that in future, a machine newly introduced to an environment could be shown by its human user the articulated objects particular to that environment, inferring from these "visual demonstrations" enough information to actuate each object independently of the user. Our method employs sparse (markerless) feature tracking, motion segmentation, component pose estimation, and articulation learning; it does not require prior object models. Using the method, a robot can observe an object being exercised, infer a kinematic model incorporating rigid, prismatic and revolute joints, then use the model to predict the object's motion from a novel vantage point. We evaluate the method's performance, and compare it to that of a previously published technique, for a variety of household objects.Comment: Published in Robotics: Science and Systems X, Berkeley, CA. ISBN: 978-0-9923747-0-

    Galactic Kinematics Towards the South Galactic Pole. First Results from the Yale-San Juan Southern Proper-Motion Program

    Get PDF
    The predictions from a Galactic Structure and Kinematic model code are compared to the color counts and absolute proper-motions derived from the Southern Proper-Motion survey covering more than 700 deg2\deg^2 toward the South Galactic Pole in the range 9<BJ199 < B_{\rm J} \le 19. The theoretical assumptions and associated computational procedures, the geometry for the kinematic model, and the adopted parameters are presented in detail and compared to other Galactic Kinematic models of its kind. The data to which the model is compared consists of more than 30,000 randomly selected stars, and it is best fit by models with a solar peculiar motion of +5 km s1^{-1} in the V-component (pointing in the direction of Galactic rotation), a large LSR speed of 270 km s1^{-1}, and a (disk) velocity ellipsoid that always points towards the Galactic center. The absolute proper-motions in the U-component indicate a solar peculiar motion of 11.0±1.511.0 \pm 1.5 km s1^{-1}, with no need for a local expansion or contraction term. The fainter absolute motions show an indication that the thick-disk must exhibit a rather steep velocity gradient of about -36 km s1^{-1} kpc1^{-1} with respect to the LSR. We are not able to set constraints on the overall rotation for the halo, nor on the thick-disk or halo velocity dispersions. Some substructure in the U & V proper-motions could be present in the brighter bins 10<BJ<1310 < B_{\rm J} < 13, and it might be indicative of (disk) moving groups.Comment: 24 double-column pages, 12 tables, AAS Latex macros v4.0, 19 B&W figures, 1 color figure. Accepted for publication on The Astronomical Journa

    Kinematic Signature of a Rotating Bar Near a Resonance

    Get PDF
    There have been several recent suggestions that the Milky Way has rotating bar-like features based on HI and star count data. In this paper, I show that such features cause distinctive stellar kinematic signatures near OLR and ILR. The effects of these resonances may be observable far from the peak density of the pattern and relatively nearby the solar position. The details of the kinematic signatures depend on the evolutionary history of the `bar' and therefore velocity data, both systemic and velocity dispersion, may be used to probe the evolutionary history as well as the present state of the Galaxy. Kinematic models for a variety of simple scenarios are presented. Models with evolving pattern speeds show significantly stronger dispersion signatures than those with static pattern speeds, suggesting that useful observational constraints are possible. The models are applied to the proposed rotating spheroid and bar models; we find: 1) none of these models chosen to represent the proposed large-scale rotating spheroid are consistent with the stellar kinematics; and 2) a Galactic bar with semimajor axis of 3\kpc will cause a large increase in velocity dispersion in the vicinity of OLR (\sim5\kpc) with little change in the net radial motion and such a signature is suggested by K-giant velocity data. Potential future observations and analyses are discussed.Comment: 24 pages, AAS LaTeX macros v3.0, 23 figures (available on request
    corecore