13 research outputs found

    Information Aided Navigation: A Review

    Full text link
    The performance of inertial navigation systems is largely dependent on the stable flow of external measurements and information to guarantee continuous filter updates and bind the inertial solution drift. Platforms in different operational environments may be prevented at some point from receiving external measurements, thus exposing their navigation solution to drift. Over the years, a wide variety of works have been proposed to overcome this shortcoming, by exploiting knowledge of the system current conditions and turning it into an applicable source of information to update the navigation filter. This paper aims to provide an extensive survey of information aided navigation, broadly classified into direct, indirect, and model aiding. Each approach is described by the notable works that implemented its concept, use cases, relevant state updates, and their corresponding measurement models. By matching the appropriate constraint to a given scenario, one will be able to improve the navigation solution accuracy, compensate for the lost information, and uncover certain internal states, that would otherwise remain unobservable.Comment: 8 figures, 3 table

    Measurement and Characterization of Track Geometry Data: Literature Review and Recommendations for Processing FRA ATIP Program Data

    Get PDF
    Task Order 86From October 2018 to March 2019, the Federal Railroad Administration sponsored Transportation Technology Center, Inc. to conduct a literature review on the methods of measurement and characterization of track geometry. The goal of the review was to summarize the current state of track geometry measurement and to provide recommendations on methods for processing and characterizing track geometry data collected under FRA\u2019s Automated Track Inspection Program

    Advances in Sensors and Sensing for Technical Condition Assessment and NDT

    Get PDF
    The adequate assessment of key apparatus conditions is a hot topic in all branches of industry. Various online and offline diagnostic methods are widely applied to provide early detections of any abnormality in exploitation. Furthermore, different sensors may also be applied to capture selected physical quantities that may be used to indicate the type of potential fault. The essential steps of the signal analysis regarding the technical condition assessment process may be listed as: signal measurement (using relevant sensors), processing, modelling, and classification. In the Special Issue entitled “Advances in Sensors and Sensing for Technical Condition Assessment and NDT”, we present the latest research in various areas of technology

    Combining Sensors and Multibody Models for Applications in Vehicles, Machines, Robots and Humans

    Get PDF
    The combination of physical sensors and computational models to provide additional information about system states, inputs and/or parameters, in what is known as virtual sensing, is becoming increasingly popular in many sectors, such as the automotive, aeronautics, aerospatial, railway, machinery, robotics and human biomechanics sectors. While, in many cases, control-oriented models, which are generally simple, are the best choice, multibody models, which can be much more detailed, may be better suited to some applications, such as during the design stage of a new product

    Mobile Laser Scanning – System development, performance and applications

    Get PDF
    Osajulkaisut: Publication 1: Antero Kukko, Sanna Kaasalainen, and Paula Litkey. 2008. Effect of incidence angle on laser scanner intensity and surface data. Applied Optics, volume 47, number 7, pages 986-992. doi:10.1364/AO.47.000986 Publication 2: Antero Kukko and Juha Hyyppä. 2009. Small-footprint laser scanning simulator for system validation, error assessment, and algorithm development. Photogrammetric Engineering and Remote Sensing, volume 75, number 9, pages 1177-1189. Publication 3: Antero Kukko, Constantin-Octavian Andrei, Veli-Matti Salminen, Harri Kaartinen, Yuwei Chen, Petri Rönnholm, Hannu Hyyppä, Juha Hyyppä, Ruizhi Chen, Henrik Haggrén, Iisakki Kosonen, and Karel Čapek. 2007. Road environment mapping system of the Finnish Geodetic Institute - FGI ROAMER -. In: Petri Rönnholm, Hannu Hyyppä, and Juha Hyyppä (editors). Proceedings of the ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007. Espoo, Finland. 12-14 September 2007. International Society for Photogrammetry and Remote Sensing. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, volume 36, part 3 / W52, pages 241-247. ISSN 1682-1777. Publication 4: Antero Kukko, Harri Kaartinen, Juha Hyyppä, and Yuwei Chen. 2012. Multiplatform mobile laser scanning: Usability and performance. Sensors, volume 12, number 9, pages 11712-11733. doi:10.3390/s120911712 Publication 5: Harri Kaartinen, Juha Hyyppä, Antero Kukko, Anttoni Jaakkola, and Hannu Hyyppä. 2012. Benchmarking the performance of mobile laser scanning systems using a permanent test field. Sensors, volume 12, number 9, pages 12814-12835. doi:10.3390/s120912814 Publication 6: P. Alho, A. Kukko, H. Hyyppä, H. Kaartinen, J. Hyyppä, and A. Jaakkola. 2009. Application of boat-based laser scanning for river survey. Earth Surface Processes and Landforms, volume 34, number 13, pages 1831-1838. doi:10.1002/esp.1879 Publication 7: Matti Vaaja, Juha Hyyppä, Antero Kukko, Harri Kaartinen, Hannu Hyyppä, and Petteri Alho. 2011. Mapping topography changes and elevation accuracies using a mobile laser scanner. Remote Sensing, volume 3, number 3, pages 587-600. doi:10.3390/rs3030587Laser scanning is a surveying technique used for mapping topography, vegetation, urban areas and infrastructure, ice, and other targets of interest. Its application on a terrestrial mobile platform is a promising method for effectively collecting three-dimensional data for complex environments and for producing model information for location-based services necessitating rapidly collected and up-to-date data. Development of mobile laser scanning (MLS) systems for such purposes is presented in this study. Different aspects of this technology were analyzed in laboratory experiments, simulations and field tests, in order to understand their effects on the ranging, intensity and point cloud data, especially in terms of point distribution and accuracy. In order to validate the performance of the developed ROAMER and AKHKA MLS systems, various three-dimensional mapping tasks were performed during an international benchmarking test, as well as in the field in numerous projects. The results showed that the proposed systems can reliably provide accurate data. It has also been shown that the various modalities of the systems allow data acquisition in numerous application scenarios and environments not previously possible. MLS improves the data output compared to terrestrial laser scanning (TLS) and outperforms airborne laser scanning (ALS) in ranging precision and point density. As a result, MLS is well suited to fill the gap between these two previously dominant 3D data acquisition techniques.Laserkeilaus on mittaustekniikka, jota käytetään maaston topografian kasvillisuuden, rakennettujen alueiden, infrastruktuurin, jään ja muiden kohteiden kartoitukseen. Tekniikan soveltaminen liikkuvalle alustalle on lupaava menetelmä monimuotoisten ympäristöjen tehokkaaseen kolmiulotteiseen mittaamiseen ja mallinnustiedon tuottamiseen paikkatietopalveluihin, jotka edellyttävät tiedon nopeaa hankintaa ja ajantasaisuutta. Tässä tutkimuksessa kehitettiin liikkuvia laserkeilausjärjestelmiä (MLS). Eri tekijöiden vaikutuksia etäisyys- ja intensiteettihavaintoihin, pistejakaumaan ja tarkkuuteen selvitettiin laboratoriokokein, simuloimalla ja koetöin. Tutkimuksessa kehitettyjen ROAMER ja AKHKA MLS-järjestelmien suorituskykyä kolmiulotteisen mittaustiedon tuottamiseen erilaisissa kartoitustehtävissä tutkittiin kansainvälisessä vertailututkimuksessa kaupunkitestikentän avulla, mutta lisäksi käytännön sovelluksissa useassa eri projektissa. Tutkimuksen tulokset osoittavat, että kehitetyt MLS järjestelmät tuottavat tarkkaa tietoa luotettavasti. Järjestelmien monikäyttöisyys mahdollistaa aineistonhankinnan eri sovellustapauksissa ja ympäristöissä tavalla, joka ei ole aikaisemmin ollut mahdollista. Liikkuva laserkeilaus parantaa merkittävästi mittauksen tehokkuutta maalaserkeilaukseen verrattuna, ja ylittää lentolaserkeilauksen suorituskyvyn etäisyysmittauksen tarkkuudessa ja pistetiheydessä. Liikkuva laserkeilaus tarjoaakin näitä kahta aikaisemmin vallitsevaa 3D-mittausteknologiaa hyvin täydentävän kartoitusmenetelmän

    Lane-Precise Localization with Production Vehicle Sensors and Application to Augmented Reality Navigation

    Get PDF
    This works describes an approach to lane-precise localization on current digital maps. A particle filter fuses data from production vehicle sensors, such as GPS, radar, and camera. Performance evaluations on more than 200 km of data show that the proposed algorithm can reliably determine the current lane. Furthermore, a possible architecture for an intuitive route guidance system based on Augmented Reality is proposed together with a lane-change recommendation for unclear situations

    Advanced Location-Based Technologies and Services

    Get PDF
    Since the publication of the first edition in 2004, advances in mobile devices, positioning sensors, WiFi fingerprinting, and wireless communications, among others, have paved the way for developing new and advanced location-based services (LBSs). This second edition provides up-to-date information on LBSs, including WiFi fingerprinting, mobile computing, geospatial clouds, geospatial data mining, location privacy, and location-based social networking. It also includes new chapters on application areas such as LBSs for public health, indoor navigation, and advertising. In addition, the chapter on remote sensing has been revised to address advancements

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity
    corecore