2,771 research outputs found

    The Role of Learning and Kinematic Features in Dexterous Manipulation: a Comparative Study with Two Robotic Hands

    Get PDF
    Dexterous movements performed by the human hand are by far more sophisticated than those achieved by current humanoid robotic hands and systems used to control them. This work aims at providing a contribution in order to overcome this gap by proposing a bio-inspired control architecture that captures two key elements underlying human dexterity. The first is the progressive development of skilful control, often starting from – or involving – cyclic movements, based on trial-and-error learning processes and central pattern generators. The second element is the exploitation of a particular kinematic features of the human hand, i.e. the thumb opposition. The architecture is tested with two simulated robotic hands having different kinematic features and engaged in rotating spheres, cylinders, and cubes of different sizes. The results support the feasibility of the proposed approach and show the potential of the model to allow a better understanding of the control mechanisms and kinematic principles underlying human dexterity and make them transferable to anthropomorphic robotic hands

    The role of learning and kinematic features in dexterous manipulation: a comparative study with two robotic hands

    Get PDF
    Dexterous movements performed by the human hand are by far more sophisticated than those achieved by current humanoid robotic hands and systems used to control them. This work aims at providing a contribution in order to overcome this gap by proposing a bio-inspired control architecture that captures two key elements underlying human dexterity. The first is the progressive development of skilful control, often starting from - or involving - cyclic movements, based on trial-and-error learning processes and central pattern generators. The second element is the exploitation of a particular kinematic features of the human hand, i.e. the thumb opposition. The architecture is tested with two simulated robotic hands having different kinematic features and engaged in rotating spheres, cylinders, and cubes of different sizes. The results support the feasibility of the proposed approach and show the potential of the model to allow a better understanding of the control mechanisms and kinematic principles underlying human dexterity and make them transferable to anthropomorphic robotic hands

    Design method for an anthropomorphic hand able to gesture and grasp

    Get PDF
    This paper presents a numerical method to conceive and design the kinematic model of an anthropomorphic robotic hand used for gesturing and grasping. In literature, there are few numerical methods for the finger placement of human-inspired robotic hands. In particular, there are no numerical methods, for the thumb placement, that aim to improve the hand dexterity and grasping capabilities by keeping the hand design close to the human one. While existing models are usually the result of successive parameter adjustments, the proposed method determines the fingers placements by mean of empirical tests. Moreover, a surgery test and the workspace analysis of the whole hand are used to find the best thumb position and orientation according to the hand kinematics and structure. The result is validated through simulation where it is checked that the hand looks well balanced and that it meets our constraints and needs. The presented method provides a numerical tool which allows the easy computation of finger and thumb geometries and base placements for a human-like dexterous robotic hand.Comment: IEEE International Conference on Robotics and Automation, May 2015, Seattle, United States. IEEE, 2015, Proceeding IEEE International Conference on Robotics and Automatio

    The laboratory telerobotic manipulator program

    Get PDF
    New opportunities for the application of telerobotic systems to enhance human intelligence and dexterity in the hazardous environment of space are presented by the NASA Space Station Program. Because of the need for significant increases in extravehicular activity and the potential increase in hazards associated with space programs, emphasis is being heightened on telerobotic systems research and development. The Laboratory Telerobotic Manipulator (LTM) program is performed to develop and demonstrate ground-based telerobotic manipulator system hardware for research and demonstrations aimed at future NASA applications. The LTM incorporates traction drives, modularity, redundant kinematics, and state-of-the-art hierarchical control techniques to form a basis for merging the diverse technological domains of robust, high-dexterity teleoperations and autonomous robotic operation into common hardware to further NASA's research

    An inverse kinematics algorithm for a highly redundant variable-geometry-truss manipulator

    Get PDF
    A new class of robotic arm consists of a periodic sequence of truss substructures, each of which has several variable-length members. Such variable-geometry-truss manipulator (VGTMs) are inherently highly redundant and promise a significant increase in dexterity over conventional anthropomorphic manipulators. This dexterity may be exploited for both obstacle avoidance and controlled deployment in complex workspaces. The inverse kinematics problem for such unorthodox manipulators, however, becomes complex because of the large number of degrees of freedom, and conventional solutions to the inverse kinematics problem become inefficient because of the high degree of redundancy. A solution is presented to this problem based on a spline-like reference curve for the manipulator's shape. Such an approach has a number of advantages: (1) direct, intuitive manipulation of shape; (2) reduced calculation time; and (3) direct control over the effective degree of redundancy of the manipulator. Furthermore, although the algorithm was developed primarily for variable-geometry-truss manipulators, it is general enough for application to a number of manipulator designs

    Nanoparticle shape effects on squeezed MHD flow of water based Cu, Al2O3 and SWCNTs over a porous sensor surface

    Get PDF
    Impact of nanoparticle shape on the squeezed MHD flow of water based metallic nanoparticles over a porous sensor surface in the presence of heat source has been investigated. In distinctly most paramount studies, three distinctive forms of nanoparticle shapes are employed into account, i.e. sphere ðm ¼ 3:0Þ, cylinder ðm ¼ 6:3698Þ and laminar ðm ¼ 16:1576Þ. The controlling partial differential equations (PDEs) are regenerated into ordinary differential equations (ODEs) by manipulating consistent conformity conversion and it is determined numerically by handling Runge Kutta Fehlberg method with shooting technique. It is noticed that the solid volume fraction and nanoparticle shape have powerful outputs in squeezing flow phenomena, the sphere shape nanoparticle in Cu – water and cylindrical shape in SWCNTs-water in the presence of magnetic field along with thermal radiation energy has better improvement on heat transfer as compared with the other nanoparticle shapes in different flow regimes
    corecore