145 research outputs found

    A robotic microsurgical forceps for transoral laser microsurgery

    Get PDF
    Purpose: In transoral laser microsurgery (TLM), the close curved cylindrical structure of the laryngeal region offers functional challenges to surgeons who operate on its malignancies with rigid, single degree-of-freedom (DOF) forceps. These challenges include surgeon hand tremors, poor reachability, poor tissue surface perception, and reduced ergonomy in design. The integrated robotic microsurgical forceps presented here is capable of addressing the above challenges through tele-operated tissue manipulation in TLM. Methods: The proposed device is designed in compliance with the spatial constraints in TLM. It incorporates a novel 2-DOF motorized microsurgical forceps end-effector, which is integrated with a commercial 6-DOF serial robotic manipulator. The integrated device is tele-operated through the haptic master interface, Omega.7. The device is augmented with a force sensor to measure tissue gripping force. The device is called RMF-2F, i.e. robotic microsurgical forceps with 2-DOF end-effector and force sensing. RMF-2F is evaluated through validation trials and pick-n-place experiments with subjects. Furthermore, the device is trialled with expert surgeons through preliminary tasks in a simulated surgical scenario. Results: RMF-2F shows a motion tracking error of less than 400 μm. User trials demonstrate the device’s accuracy in task completion and ease of manoeuvrability using the Omega.7 through improved trajectory following and execution times. The tissue gripping force shows better regulation with haptic feedback (1.624 N) than without haptic feedback (2.116 N). Surgeons positively evaluated the device with appreciation for improved access in the larynx and gripping force feedback. Conclusions: RMF-2F offers an ergonomic and intuitive interface for intraoperative tissue manipulation in TLM. The device performance, usability, and haptic feedback capability were positively evaluated by users as well as expert surgeons. RMF-2F introduces the benefits of robotic teleoperation including, (i) overcoming hand tremors and wrist excursions, (ii) improved reachability and accuracy, and (iii) tissue gripping feedback for safe tissue manipulation

    Cable-driven parallel robot for transoral laser phonosurgery

    Get PDF
    Transoral laser phonosurgery (TLP) is a common surgical procedure in otolaryngology. Currently, two techniques are commonly used: free beam and fibre delivery. For free beam delivery, in combination with laser scanning techniques, accurate laser pattern scanning can be achieved. However, a line-of-sight to the target is required. A suspension laryngoscope is adopted to create a straight working channel for the scanning laser beam, which could introduce lesions to the patient, and the manipulability and ergonomics are poor. For the fibre delivery approach, a flexible fibre is used to transmit the laser beam, and the distal tip of the laser fibre can be manipulated by a flexible robotic tool. The issues related to the limitation of the line-of-sight can be avoided. However, the laser scanning function is currently lost in this approach, and the performance is inferior to that of the laser scanning technique in the free beam approach. A novel cable-driven parallel robot (CDPR), LaryngoTORS, has been developed for TLP. By using a curved laryngeal blade, a straight suspension laryngoscope will not be necessary to use, which is expected to be less traumatic to the patient. Semi-autonomous free path scanning can be executed, and high precision and high repeatability of the free path can be achieved. The performance has been verified in various bench and ex vivo tests. The technical feasibility of the LaryngoTORS robot for TLP was considered and evaluated in this thesis. The LaryngoTORS robot has demonstrated the potential to offer an acceptable and feasible solution to be used in real-world clinical applications of TLP. Furthermore, the LaryngoTORS robot can combine with fibre-based optical biopsy techniques. Experiments of probe-based confocal laser endomicroscopy (pCLE) and hyperspectral fibre-optic sensing were performed. The LaryngoTORS robot demonstrates the potential to be utilised to apply the fibre-based optical biopsy of the larynx.Open Acces

    Snake-Like Robots for Minimally Invasive, Single Port, and Intraluminal Surgeries

    Full text link
    The surgical paradigm of Minimally Invasive Surgery (MIS) has been a key driver to the adoption of robotic surgical assistance. Progress in the last three decades has led to a gradual transition from manual laparoscopic surgery with rigid instruments to robot-assisted surgery. In the last decade, the increasing demand for new surgical paradigms to enable access into the anatomy without skin incision (intraluminal surgery) or with a single skin incision (Single Port Access surgery - SPA) has led researchers to investigate snake-like flexible surgical devices. In this chapter, we first present an overview of the background, motivation, and taxonomy of MIS and its newer derivatives. Challenges of MIS and its newer derivatives (SPA and intraluminal surgery) are outlined along with the architectures of new snake-like robots meeting these challenges. We also examine the commercial and research surgical platforms developed over the years, to address the specific functional requirements and constraints imposed by operations in confined spaces. The chapter concludes with an evaluation of open problems in surgical robotics for intraluminal and SPA, and a look at future trends in surgical robot design that could potentially address these unmet needs.Comment: 41 pages, 18 figures. Preprint of article published in the Encyclopedia of Medical Robotics 2018, World Scientific Publishing Company www.worldscientific.com/doi/abs/10.1142/9789813232266_000

    A continuum robotic platform for endoscopic non-contact laser surgery: design, control, and preclinical evaluation

    Get PDF
    The application of laser technologies in surgical interventions has been accepted in the clinical domain due to their atraumatic properties. In addition to manual application of fibre-guided lasers with tissue contact, non-contact transoral laser microsurgery (TLM) of laryngeal tumours has been prevailed in ENT surgery. However, TLM requires many years of surgical training for tumour resection in order to preserve the function of adjacent organs and thus preserve the patient’s quality of life. The positioning of the microscopic laser applicator outside the patient can also impede a direct line-of-sight to the target area due to anatomical variability and limit the working space. Further clinical challenges include positioning the laser focus on the tissue surface, imaging, planning and performing laser ablation, and motion of the target area during surgery. This dissertation aims to address the limitations of TLM through robotic approaches and intraoperative assistance. Although a trend towards minimally invasive surgery is apparent, no highly integrated platform for endoscopic delivery of focused laser radiation is available to date. Likewise, there are no known devices that incorporate scene information from endoscopic imaging into ablation planning and execution. For focusing of the laser beam close to the target tissue, this work first presents miniaturised focusing optics that can be integrated into endoscopic systems. Experimental trials characterise the optical properties and the ablation performance. A robotic platform is realised for manipulation of the focusing optics. This is based on a variable-length continuum manipulator. The latter enables movements of the endoscopic end effector in five degrees of freedom with a mechatronic actuation unit. The kinematic modelling and control of the robot are integrated into a modular framework that is evaluated experimentally. The manipulation of focused laser radiation also requires precise adjustment of the focal position on the tissue. For this purpose, visual, haptic and visual-haptic assistance functions are presented. These support the operator during teleoperation to set an optimal working distance. Advantages of visual-haptic assistance are demonstrated in a user study. The system performance and usability of the overall robotic system are assessed in an additional user study. Analogous to a clinical scenario, the subjects follow predefined target patterns with a laser spot. The mean positioning accuracy of the spot is 0.5 mm. Finally, methods of image-guided robot control are introduced to automate laser ablation. Experiments confirm a positive effect of proposed automation concepts on non-contact laser surgery.Die Anwendung von Lasertechnologien in chirurgischen Interventionen hat sich aufgrund der atraumatischen Eigenschaften in der Klinik etabliert. Neben manueller Applikation von fasergeführten Lasern mit Gewebekontakt hat sich die kontaktfreie transorale Lasermikrochirurgie (TLM) von Tumoren des Larynx in der HNO-Chirurgie durchgesetzt. Die TLM erfordert zur Tumorresektion jedoch ein langjähriges chirurgisches Training, um die Funktion der angrenzenden Organe zu sichern und damit die Lebensqualität der Patienten zu erhalten. Die Positionierung des mikroskopis chen Laserapplikators außerhalb des Patienten kann zudem die direkte Sicht auf das Zielgebiet durch anatomische Variabilität erschweren und den Arbeitsraum einschränken. Weitere klinische Herausforderungen betreffen die Positionierung des Laserfokus auf der Gewebeoberfläche, die Bildgebung, die Planung und Ausführung der Laserablation sowie intraoperative Bewegungen des Zielgebietes. Die vorliegende Dissertation zielt darauf ab, die Limitierungen der TLM durch robotische Ansätze und intraoperative Assistenz zu adressieren. Obwohl ein Trend zur minimal invasiven Chirurgie besteht, sind bislang keine hochintegrierten Plattformen für die endoskopische Applikation fokussierter Laserstrahlung verfügbar. Ebenfalls sind keine Systeme bekannt, die Szeneninformationen aus der endoskopischen Bildgebung in die Ablationsplanung und -ausführung einbeziehen. Für eine situsnahe Fokussierung des Laserstrahls wird in dieser Arbeit zunächst eine miniaturisierte Fokussieroptik zur Integration in endoskopische Systeme vorgestellt. Experimentelle Versuche charakterisieren die optischen Eigenschaften und das Ablationsverhalten. Zur Manipulation der Fokussieroptik wird eine robotische Plattform realisiert. Diese basiert auf einem längenveränderlichen Kontinuumsmanipulator. Letzterer ermöglicht in Kombination mit einer mechatronischen Aktuierungseinheit Bewegungen des Endoskopkopfes in fünf Freiheitsgraden. Die kinematische Modellierung und Regelung des Systems werden in ein modulares Framework eingebunden und evaluiert. Die Manipulation fokussierter Laserstrahlung erfordert zudem eine präzise Anpassung der Fokuslage auf das Gewebe. Dafür werden visuelle, haptische und visuell haptische Assistenzfunktionen eingeführt. Diese unterstützen den Anwender bei Teleoperation zur Einstellung eines optimalen Arbeitsabstandes. In einer Anwenderstudie werden Vorteile der visuell-haptischen Assistenz nachgewiesen. Die Systemperformanz und Gebrauchstauglichkeit des robotischen Gesamtsystems werden in einer weiteren Anwenderstudie untersucht. Analog zu einem klinischen Einsatz verfolgen die Probanden mit einem Laserspot vorgegebene Sollpfade. Die mittlere Positioniergenauigkeit des Spots beträgt dabei 0,5 mm. Zur Automatisierung der Ablation werden abschließend Methoden der bildgestützten Regelung vorgestellt. Experimente bestätigen einen positiven Effekt der Automationskonzepte für die kontaktfreie Laserchirurgie

    LaryngoTORS: a novel cable-driven parallel robotic system for transoral laser phonosurgery

    Get PDF
    Transoral laser phonosurgery is a commonly used surgical procedure in which a laser beam is used to perform incision, ablation or photocoagulation of laryngeal tissues. Two techniques are commonly practiced: free beam and fiber delivery. For free beam delivery, a laser scanner is integrated into a surgical microscope to provide an accurate laser scanning pattern. This approach can only be used under direct line of sight, which may cause increased postoperative pain to the patient and injury, is uncomfortable for the surgeon during prolonged operations, the manipulability is poor and extensive training is required. In contrast, in the fiber delivery technique, a flexible fiber is used to transmit the laser beam and therefore does not require direct line of sight. However, this can only achieve manual level accuracy, repeatability and velocity, and does not allow for pattern scanning. Robotic systems have been developed to overcome the limitations of both techniques. However, these systems offer limited workspace and degrees-of-freedom (DoF), limiting their clinical applicability. This work presents the LaryngoTORS, a robotic system that aims at overcoming the limitations of the two techniques, by using a cable-driven parallel mechanism (CDPM) attached at the end of a curved laryngeal blade for controlling the end tip of the laser fiber. The system allows autonomous generation of scanning patterns or user driven freepath scanning. Path scan validation demonstrated errors as low as 0.054±0.028 mm and high repeatability of 0.027±0.020 mm (6×2 mm arc line). Ex vivo tests on chicken tissue have been carried out. The results show the ability of the system to overcome limitations of current methods with high accuracy and repeatability using the superior fiber delivery approach

    Robotic Assistant Systems for Otolaryngology-Head and Neck Surgery

    Get PDF
    Recently, there has been a significant movement in otolaryngology-head and neck surgery (OHNS) toward minimally invasive techniques, particularly those utilizing natural orifices. However, while these techniques can reduce the risk of complications encountered with classic open approaches such as scarring, infection, and damage to healthy tissue in order to access the surgical site, there remain significant challenges in both visualization and manipulation, including poor sensory feedback, reduced visibility, limited working area, and decreased precision due to long instruments. This work presents two robotic assistance systems which help to overcome different aspects of these challenges. The first is the Robotic Endo-Laryngeal Flexible (Robo-ELF) Scope, which assists surgeons in manipulating flexible endoscopes. Flexible endoscopes can provide superior visualization compared to microscopes or rigid endoscopes by allowing views not constrained by line-of-sight. However, they are seldom used in the operating room due to the difficulty in precisely manually manipulating and stabilizing them for long periods of time. The Robo-ELF Scope enables stable, precise robotic manipulation for flexible scopes and frees the surgeon’s hands to operate bimanually. The Robo-ELF Scope has been demonstrated and evaluated in human cadavers and is moving toward a human subjects study. The second is the Robotic Ear Nose and Throat Microsurgery System (REMS), which assists surgeons in manipulating rigid instruments and endoscopes. There are two main types of challenges involved in manipulating rigid instruments: reduced precision from hand tremor amplified by long instruments, and difficulty navigating through complex anatomy surrounded by sensitive structures. The REMS enables precise manipulation by allowing the surgeon to hold the surgical instrument while filtering unwanted movement such as hand tremor. The REMS also enables augmented navigation by calculating the position of the instrument with high accuracy, and combining this information with registered preoperative imaging data to enforce virtual safety barriers around sensitive anatomy. The REMS has been demonstrated and evaluated in user studies with synthetic phantoms and human cadavers

    A Biomimetic steering robot for Minimally invasive surgery application

    Get PDF
    International audienceMinimally Invasive Surgery represents the future of many types of medical inter- ventions such as keyhole neurosurgey or transluminal endoscopic surgery. These procedures involve insertion of surgical instruments such as needles and endoscopes into human body through small incision/ body cavity for biopsy and drug delivery. However, nearly all surgical instruments for these procedures are inserted manually and there is a long learning curve for surgeons to use them properly. Many research efforts have been made to design active instruments (endoscope, needles) to improve this procedure during last decades. New robot mechanisms have been designed and used to improve the dexterity of current endoscope. Usually these robots are flexible and can pass the constrained space for fine manipulations. In recent years, a con- tinuum robotic mechanism has been investigated and designed for medical surgery. Those robots are characterized by the fact that their mechanical components do not have rigid links and discrete joints in contrast with traditional robot manipula- tors. The design of these robots is inspired by movements of natural animals such as tongues, elephant trunks and tentacles. The unusual compliance and redundant degrees of freedom of these robots provide strong potential to achieve delicate tasks successfully even in cluttered and unstructured environments. This chapter will present a complete application of a continuum robot for Mini- mally Invasive Surgery of colonoscopy. This system is composed of a micro-robotic tip, a set of position sensors and a real-time control system for guiding the explo- ration of colon. Details will be described on the modeling of the used pneumatic actuators, the design of the mechanical component, the kinematic model analysis and the control strategy for automatically guiding the progression of the device inside the human colon. Experimental results will be presented to check the perfor- mances of the whole system within a transparent tube

    임상술기 향상을 위한 딥러닝 기법 연구: 대장내시경 진단 및 로봇수술 술기 평가에 적용

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 협동과정 의용생체공학전공, 2020. 8. 김희찬.This paper presents deep learning-based methods for improving performance of clinicians. Novel methods were applied to the following two clinical cases and the results were evaluated. In the first study, a deep learning-based polyp classification algorithm for improving clinical performance of endoscopist during colonoscopy diagnosis was developed. Colonoscopy is the main method for diagnosing adenomatous polyp, which can multiply into a colorectal cancer and hyperplastic polyps. The classification algorithm was developed using convolutional neural network (CNN), trained with colorectal polyp images taken by a narrow-band imaging colonoscopy. The proposed method is built around an automatic machine learning (AutoML) which searches for the optimal architecture of CNN for colorectal polyp image classification and trains the weights of the architecture. In addition, gradient-weighted class activation mapping technique was used to overlay the probabilistic basis of the prediction result on the polyp location to aid the endoscopists visually. To verify the improvement in diagnostic performance, the efficacy of endoscopists with varying proficiency levels were compared with or without the aid of the proposed polyp classification algorithm. The results confirmed that, on average, diagnostic accuracy was improved and diagnosis time was shortened in all proficiency groups significantly. In the second study, a surgical instruments tracking algorithm for robotic surgery video was developed, and a model for quantitatively evaluating the surgeons surgical skill based on the acquired motion information of the surgical instruments was proposed. The movement of surgical instruments is the main component of evaluation for surgical skill. Therefore, the focus of this study was develop an automatic surgical instruments tracking algorithm, and to overcome the limitations presented by previous methods. The instance segmentation framework was developed to solve the instrument occlusion issue, and a tracking framework composed of a tracker and a re-identification algorithm was developed to maintain the type of surgical instruments being tracked in the video. In addition, algorithms for detecting the tip position of instruments and arm-indicator were developed to acquire the movement of devices specialized for the robotic surgery video. The performance of the proposed method was evaluated by measuring the difference between the predicted tip position and the ground truth position of the instruments using root mean square error, area under the curve, and Pearsons correlation analysis. Furthermore, motion metrics were calculated from the movement of surgical instruments, and a machine learning-based robotic surgical skill evaluation model was developed based on these metrics. These models were used to evaluate clinicians, and results were similar in the developed evaluation models, the Objective Structured Assessment of Technical Skill (OSATS), and the Global Evaluative Assessment of Robotic Surgery (GEARS) evaluation methods. In this study, deep learning technology was applied to colorectal polyp images for a polyp classification, and to robotic surgery videos for surgical instruments tracking. The improvement in clinical performance with the aid of these methods were evaluated and verified.본 논문은 의료진의 임상술기 능력을 향상시키기 위하여 새로운 딥러닝 기법들을 제안하고 다음 두 가지 실례에 대해 적용하여 그 결과를 평가하였다. 첫 번째 연구에서는 대장내시경으로 광학 진단 시, 내시경 전문의의 진단 능력을 향상시키기 위하여 딥러닝 기반의 용종 분류 알고리즘을 개발하고, 내시경 전문의의 진단 능력 향상 여부를 검증하고자 하였다. 대장내시경 검사로 암종으로 증식할 수 있는 선종과 과증식성 용종을 진단하는 것은 중요하다. 본 연구에서는 협대역 영상 내시경으로 촬영한 대장 용종 영상으로 합성곱 신경망을 학습하여 분류 알고리즘을 개발하였다. 제안하는 알고리즘은 자동 기계학습 (AutoML) 방법으로, 대장 용종 영상에 최적화된 합성곱 신경망 구조를 찾고 신경망의 가중치를 학습하였다. 또한 기울기-가중치 클래스 활성화 맵핑 기법을 이용하여 개발한 합성곱 신경망 결과의 확률적 근거를 용종 위치에 시각적으로 나타나도록 함으로 내시경 전문의의 진단을 돕도록 하였다. 마지막으로, 숙련도 그룹별로 내시경 전문의가 용종 분류 알고리즘의 결과를 참고하였을 때 진단 능력이 향상되었는지 비교 실험을 진행하였고, 모든 그룹에서 유의미하게 진단 정확도가 향상되고 진단 시간이 단축되었음을 확인하였다. 두 번째 연구에서는 로봇수술 동영상에서 수술도구 위치 추적 알고리즘을 개발하고, 획득한 수술도구의 움직임 정보를 바탕으로 수술자의 숙련도를 정량적으로 평가하는 모델을 제안하였다. 수술도구의 움직임은 수술자의 로봇수술 숙련도를 평가하기 위한 주요한 정보이다. 따라서 본 연구는 딥러닝 기반의 자동 수술도구 추적 알고리즘을 개발하였으며, 다음 두가지 선행연구의 한계점을 극복하였다. 인스턴스 분할 (Instance Segmentation) 프레임웍을 개발하여 폐색 (Occlusion) 문제를 해결하였고, 추적기 (Tracker)와 재식별화 (Re-Identification) 알고리즘으로 구성된 추적 프레임웍을 개발하여 동영상에서 추적하는 수술도구의 종류가 유지되도록 하였다. 또한 로봇수술 동영상의 특수성을 고려하여 수술도구의 움직임을 획득하기위해 수술도구 끝 위치와 로봇 팔-인디케이터 (Arm-Indicator) 인식 알고리즘을 개발하였다. 제안하는 알고리즘의 성능은 예측한 수술도구 끝 위치와 정답 위치 간의 평균 제곱근 오차, 곡선 아래 면적, 피어슨 상관분석으로 평가하였다. 마지막으로, 수술도구의 움직임으로부터 움직임 지표를 계산하고 이를 바탕으로 기계학습 기반의 로봇수술 숙련도 평가 모델을 개발하였다. 개발한 평가 모델은 기존의 Objective Structured Assessment of Technical Skill (OSATS), Global Evaluative Assessment of Robotic Surgery (GEARS) 평가 방법과 유사한 성능을 보임을 확인하였다. 본 논문은 의료진의 임상술기 능력을 향상시키기 위하여 대장 용종 영상과 로봇수술 동영상에 딥러닝 기술을 적용하고 그 유효성을 확인하였으며, 향후에 제안하는 방법이 임상에서 사용되고 있는 진단 및 평가 방법의 대안이 될 것으로 기대한다.Chapter 1 General Introduction 1 1.1 Deep Learning for Medical Image Analysis 1 1.2 Deep Learning for Colonoscipic Diagnosis 2 1.3 Deep Learning for Robotic Surgical Skill Assessment 3 1.4 Thesis Objectives 5 Chapter 2 Optical Diagnosis of Colorectal Polyps using Deep Learning with Visual Explanations 7 2.1 Introduction 7 2.1.1 Background 7 2.1.2 Needs 8 2.1.3 Related Work 9 2.2 Methods 11 2.2.1 Study Design 11 2.2.2 Dataset 14 2.2.3 Preprocessing 17 2.2.4 Convolutional Neural Networks (CNN) 21 2.2.4.1 Standard CNN 21 2.2.4.2 Search for CNN Architecture 22 2.2.4.3 Searched CNN Training 23 2.2.4.4 Visual Explanation 24 2.2.5 Evaluation of CNN and Endoscopist Performances 25 2.3 Experiments and Results 27 2.3.1 CNN Performance 27 2.3.2 Results of Visual Explanation 31 2.3.3 Endoscopist with CNN Performance 33 2.4 Discussion 45 2.4.1 Research Significance 45 2.4.2 Limitations 47 2.5 Conclusion 49 Chapter 3 Surgical Skill Assessment during Robotic Surgery by Deep Learning-based Surgical Instrument Tracking 50 3.1 Introduction 50 3.1.1 Background 50 3.1.2 Needs 51 3.1.3 Related Work 52 3.2 Methods 56 3.2.1 Study Design 56 3.2.2 Dataset 59 3.2.3 Instance Segmentation Framework 63 3.2.4 Tracking Framework 66 3.2.4.1 Tracker 66 3.2.4.2 Re-identification 68 3.2.5 Surgical Instrument Tip Detection 69 3.2.6 Arm-Indicator Recognition 71 3.2.7 Surgical Skill Prediction Model 71 3.3 Experiments and Results 78 3.3.1 Performance of Instance Segmentation Framework 78 3.3.2 Performance of Tracking Framework 82 3.3.3 Evaluation of Surgical Instruments Trajectory 83 3.3.4 Evaluation of Surgical Skill Prediction Model 86 3.4 Discussion 90 3.4.1 Research Significance 90 3.4.2 Limitations 92 3.5 Conclusion 96 Chapter 4 Summary and Future Works 97 4.1 Thesis Summary 97 4.2 Limitations and Future Works 98 Bibliography 100 Abstract in Korean 116 Acknowledgement 119Docto

    Stereo vision-based tracking of soft tissue motion with application to online ablation control in laser microsurgery

    Get PDF
    Recent research has revealed that image-based methods can enhance accuracy and safety in laser microsurgery. In this study, non-rigid tracking using surgical stereo imaging and its application to laser ablation is discussed. A recently developed motion estimation framework based on piecewise affine deformation modeling is extended by a mesh refinement step and considering texture information. This compensates for tracking inaccuracies potentially caused by inconsistent feature matches or drift. To facilitate online application of the method, computational load is reduced by concurrent processing and affine-invariant fusion of tracking and refinement results. The residual latency-dependent tracking error is further minimized by Kalman filter-based upsampling, considering a motion model in disparity space. Accuracy is assessed in laparoscopic, beating heart, and laryngeal sequences with challenging conditions, such as partial occlusions and significant deformation. Performance is compared with that of state-of-the-art methods. In addition, the online capability of the method is evaluated by tracking two motion patterns performed by a high-precision parallel-kinematic platform. Related experiments are discussed for tissue substitute and porcine soft tissue in order to compare performances in an ideal scenario and in a setup mimicking clinical conditions. Regarding the soft tissue trial, the tracking error can be significantly reduced from 0.72 mm to below 0.05 mm with mesh refinement. To demonstrate online laser path adaptation during ablation, the non-rigid tracking framework is integrated into a setup consisting of a surgical Er:YAG laser, a three-axis scanning unit, and a low-noise stereo camera. Regardless of the error source, such as laser-to-camera registration, camera calibration, image-based tracking, and scanning latency, the ablation root mean square error is kept below 0.21 mm when the sample moves according to the aforementioned patterns. Final experiments regarding motion-compensated laser ablation of structurally deforming tissue highlight the potential of the method for vision-guided laser surgery.EU/FP/-ICT/28866
    corecore