296 research outputs found

    Augmented reality applications for cultural heritage using Kinect

    Get PDF
    AbstractThis paper explores the use of data from the Kinect sensor for performing augmented reality, with emphasis on cultural heritage applications. It is shown that the combination of depth and image correspondences from the Kinect can yield a reliable estimate of the location and pose of the camera, though noise from the depth sensor introduces an unpleasant jittering of the rendered view. Kalman filtering of the camera position was found to yield a much more stable view. Results show that the system is accurate enough for in situ augmented reality applications. Skeleton tracking using Kinect data allows the appearance of participants to be augmented, and together these facilitate the development of cultural heritage applications.</jats:p

    PetroSurf3D - A Dataset for high-resolution 3D Surface Segmentation

    Full text link
    The development of powerful 3D scanning hardware and reconstruction algorithms has strongly promoted the generation of 3D surface reconstructions in different domains. An area of special interest for such 3D reconstructions is the cultural heritage domain, where surface reconstructions are generated to digitally preserve historical artifacts. While reconstruction quality nowadays is sufficient in many cases, the robust analysis (e.g. segmentation, matching, and classification) of reconstructed 3D data is still an open topic. In this paper, we target the automatic and interactive segmentation of high-resolution 3D surface reconstructions from the archaeological domain. To foster research in this field, we introduce a fully annotated and publicly available large-scale 3D surface dataset including high-resolution meshes, depth maps and point clouds as a novel benchmark dataset to the community. We provide baseline results for our existing random forest-based approach and for the first time investigate segmentation with convolutional neural networks (CNNs) on the data. Results show that both approaches have complementary strengths and weaknesses and that the provided dataset represents a challenge for future research.Comment: CBMI Submission; Dataset and more information can be found at http://lrs.icg.tugraz.at/research/petroglyphsegmentation

    Interactive exploration of historic information via gesture recognition

    Get PDF
    Developers of interactive exhibits often struggle to �nd appropriate input devices that enable intuitive control, permitting the visitors to engage e�ectively with the content. Recently motion sensing input devices like the Microsoft Kinect or Panasonic D-Imager have become available enabling gesture based control of computer systems. These devices present an attractive input device for exhibits since the user can interact with their hands and they are not required to physically touch any part of the system. In this thesis we investigate techniques to enable the raw data coming from these types of devices to be used to control an interactive exhibit. Object recognition and tracking techniques are used to analyse the user's hand where movement and clicks are processed. To show the e�ectiveness of the techniques the gesture system is used to control an interactive system designed to inform the public about iconic buildings in the centre of Norwich, UK. We evaluate two methods of making selections in the test environment. At the time of experimentation the technologies were relatively new to the image processing environment. As a result of the research presented in this thesis, the techniques and methods used have been detailed and published [3] at the VSMM (Virtual Systems and Multimedia 2012) conference with the intention of further forwarding the area

    Efficient 3D Mapping and Modelling of Indoor Scenes with the Microsoft HoloLens: A Survey

    Get PDF
    The Microsoft HoloLens is a head-worn mobile augmented reality device. It allows a real-time 3D mapping of its direct environment and a self-localisation within the acquired 3D data. Both aspects are essential for robustly augmenting the local environment around the user with virtual contents and for the robust interaction of the user with virtual objects. Although not primarily designed as an indoor mapping device, the Microsoft HoloLens has a high potential for an efficient and comfortable mapping of both room-scale and building-scale indoor environments. In this paper, we provide a survey on the capabilities of the Microsoft HoloLens (Version 1) for the efficient 3D mapping and modelling of indoor scenes. More specifically, we focus on its capabilities regarding the localisation (in terms of pose estimation) within indoor environments and the spatial mapping of indoor environments. While the Microsoft HoloLens can certainly not compete in providing highly accurate 3D data like laser scanners, we demonstrate that the acquired data provides sufficient accuracy for a subsequent standard rule-based reconstruction of a semantically enriched and topologically correct model of an indoor scene from the acquired data. Furthermore, we provide a discussion with respect to the robustness of standard handcrafted geometric features extracted from data acquired with the Microsoft HoloLens and typically used for a subsequent learning-based semantic segmentation

    New trends In geomatics, in the era of low-cost sensors, free and open source software and HPC geoBigData infrastructures

    Get PDF
    Nowadays, the increasing availability of low-cost sensors, Free and Open Source Software and High Performance Computing infrastructures allows Geomatics to widen its application scope, by stimulating new challenging investigations related to the modeling of the observations provided by these new tools. In this review, some methodologies and applications, developed at the Geodesy and Geomatics Division (DICEA) of University of Rome \u201cLa Sapienza\u201d, are shortly presented. Directly related to the mentioned software and hardware new availability, they are already ready for industrial applications and hopefully can broaden the interaction between Geomatics and other scientific and technological disciplines

    Pictures in Your Mind: Using Interactive Gesture-Controlled Reliefs to Explore Art

    Get PDF
    Tactile reliefs offer many benefits over the more classic raised line drawings or tactile diagrams, as depth, 3D shape, and surface textures are directly perceivable. Although often created for blind and visually impaired (BVI) people, a wider range of people may benefit from such multimodal material. However, some reliefs are still difficult to understand without proper guidance or accompanying verbal descriptions, hindering autonomous exploration. In this work, we present a gesture-controlled interactive audio guide (IAG) based on recent low-cost depth cameras that can be operated directly with the hands on relief surfaces during tactile exploration. The interactively explorable, location-dependent verbal and captioned descriptions promise rapid tactile accessibility to 2.5D spatial information in a home or education setting, to online resources, or as a kiosk installation at public places. We present a working prototype, discuss design decisions, and present the results of two evaluation studies: the first with 13 BVI test users and the second follow-up study with 14 test users across a wide range of people with differences and difficulties associated with perception, memory, cognition, and communication. The participant-led research method of this latter study prompted new, significant and innovative developments

    User-oriented markerless augmented reality framework based on 3D reconstruction and loop closure detection

    Get PDF
    An augmented reality (AR) system needs to track the user-view to perform an accurate augmentation registration. The present research proposes a conceptual marker-less, natural feature-based AR framework system, the process for which is divided into two stages - an offline database training session for the application developers, and an online AR tracking and display session for the final users. In the offline session, two types of 3D reconstruction application, RGBD-SLAM and SfM are integrated into the development framework for building the reference template of a target environment. The performance and applicable conditions of these two methods are presented in the present thesis, and the application developers can choose which method to apply for their developmental demands. A general developmental user interface is provided to the developer for interaction, including a simple GUI tool for augmentation configuration. The present proposal also applies a Bag of Words strategy to enable a rapid "loop-closure detection" in the online session, for efficiently querying the application user-view from the trained database to locate the user pose. The rendering and display process of augmentation is currently implemented within an OpenGL window, which is one result of the research that is worthy of future detailed investigation and development
    • …
    corecore