174 research outputs found

    Kidney and Kidney Tumor Segmentation using a Logical Ensemble of U-nets with Volumetric Validation

    Full text link
    Automated medical image segmentation is a priority research area for computational methods. In particular, detection of cancerous tumors represents a current challenge in this area with potential for real-world impact. This paper describes a method developed in response to the 2019 Kidney Tumor Segmentation Challenge (KiTS19). Axial computed tomography (CT) scans from 210 kidney cancer patients were used to develop and evaluate this automatic segmentation method based on a logical ensemble of fully-convolutional network (FCN) architectures, followed by volumetric validation. Data was pre-processed using conventional computer vision techniques, thresholding, histogram equalization, morphological operations, centering, zooming and resizing. Three binary FCN segmentation models were trained to classify kidney and tumor (2), and only tumor (1), respectively. Model output images were stacked and volumetrically validated to produce the final segmentation for each patient scan. The average F1 score from kidney and tumor pixel classifications was calculated as 0.6758 using preprocessed images and annotations; although restoring to the original image format reduced this score. It remains to be seen how this compares to other solutions.Comment: 9 pages, 4 figures, 1 table, competition submission manuscrip

    Kidney and Kidney Tumor Segmentation using a Logical Ensemble of U-nets with Volumetric Validation

    Get PDF
    Automated medical image segmentation is a priority research area for computational methods. In particular, detection of cancerous tumors represents a current challenge in this area with potential for real-world impact. This paper describes a method developed in response to the 2019 Kidney Tumor Segmentation Challenge (KiTS19). Axial computed tomography (CT) scans from 210 kidney cancer patients were used to develop and evaluate this automatic segmentation method based on a logical ensemble of fully-convolutional network (FCN) architectures, followed by volumetric validation. Data was pre-processed using conventional computer vision techniques, thresholding, histogram equalization, morphological operations, centering, zooming and resizing. Three binary FCN segmentation models were trained to classify kidney and tumor (2), and only tumor (1), respectively. Model output images were stacked and volumetrically validated to produce the final segmentation for each patient scan. The average F1 score from kidney and tumor pixel classifications was calculated as 0.6758 using preprocessed images and annotations; although restoring to the original image format reduced this score. It remains to be seen how this compares to other solutions

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Medical Image Segmentation by Deep Convolutional Neural Networks

    Get PDF
    Medical image segmentation is a fundamental and critical step for medical image analysis. Due to the complexity and diversity of medical images, the segmentation of medical images continues to be a challenging problem. Recently, deep learning techniques, especially Convolution Neural Networks (CNNs) have received extensive research and achieve great success in many vision tasks. Specifically, with the advent of Fully Convolutional Networks (FCNs), automatic medical image segmentation based on FCNs is a promising research field. This thesis focuses on two medical image segmentation tasks: lung segmentation in chest X-ray images and nuclei segmentation in histopathological images. For the lung segmentation task, we investigate several FCNs that have been successful in semantic and medical image segmentation. We evaluate the performance of these different FCNs on three publicly available chest X-ray image datasets. For the nuclei segmentation task, since the challenges of this task are difficulty in segmenting the small, overlapping and touching nuclei, and limited ability of generalization to nuclei in different organs and tissue types, we propose a novel nuclei segmentation approach based on a two-stage learning framework and Deep Layer Aggregation (DLA). We convert the original binary segmentation task into a two-step task by adding nuclei-boundary prediction (3-classes) as an intermediate step. To solve our two-step task, we design a two-stage learning framework by stacking two U-Nets. The first stage estimates nuclei and their coarse boundaries while the second stage outputs the final fine-grained segmentation map. Furthermore, we also extend the U-Nets with DLA by iteratively merging features across different levels. We evaluate our proposed method on two public diverse nuclei datasets. The experimental results show that our proposed approach outperforms many standard segmentation architectures and recently proposed nuclei segmentation methods, and can be easily generalized across different cell types in various organs

    Deep learning-enabled technologies for bioimage analysis.

    Get PDF
    Deep learning (DL) is a subfield of machine learning (ML), which has recently demonstrated its potency to significantly improve the quantification and classification workflows in biomedical and clinical applications. Among the end applications profoundly benefitting from DL, cellular morphology quantification is one of the pioneers. Here, we first briefly explain fundamental concepts in DL and then we review some of the emerging DL-enabled applications in cell morphology quantification in the fields of embryology, point-of-care ovulation testing, as a predictive tool for fetal heart pregnancy, cancer diagnostics via classification of cancer histology images, autosomal polycystic kidney disease, and chronic kidney diseases

    A Semi-Automated Approach to Medical Image Segmentation using Conditional Random Field Inference

    Full text link
    Medical image segmentation plays a crucial role in delivering effective patient care in various diagnostic and treatment modalities. Manual delineation of target volumes and all critical structures is a very tedious and highly time-consuming process and introduce uncertainties of treatment outcomes of patients. Fully automatic methods holds great promise for reducing cost and time, while at the same time improving accuracy and eliminating expert variability, yet there are still great challenges. Legally and ethically, human oversight must be integrated with ”smart tools” favoring a semi-automatic technique which can leverage the best aspects of both human and computer. In this work we show that we can formulate a semi-automatic framework for the segmentation problem by formulating it as an energy minimization problem in Conditional Random Field (CRF). We show that human input can be used as adaptive training data to condition a probabilistic boundary term modeled for the heterogeneous boundary characteristics of anatomical structures. We demonstrated that our method can effortlessly adapt to multiple structures and image modalities using a single CRF framework and tools to learn probabilistic terms interactively. To tackle a more difficult multi-class segmentation problem, we developed a new ensemble one-vs-rest graph cut algorithm. Each graph in the ensemble performs a simple and efficient bi-class (a target class vs the rest of the classes) segmentation. The final segmentation is obtained by majority vote. Our algorithm is both faster and more accurate when compared with the prior multi-class method which iteratively swaps classes. In this Thesis, we also include novel volumetric segmentation algorithms which employ deep learning and indicate how to synthesize our CRF framework with convolutional neural networks (CNN). This would allow incorporating user guidance into CNN based deep learning for this task. We think a deep learning based method interactively guided by human expert is the ideal solution for medical image segmentation

    Machine Learning in Medical Image Analysis

    Get PDF
    Machine learning is playing a pivotal role in medical image analysis. Many algorithms based on machine learning have been applied in medical imaging to solve classification, detection, and segmentation problems. Particularly, with the wide application of deep learning approaches, the performance of medical image analysis has been significantly improved. In this thesis, we investigate machine learning methods for two key challenges in medical image analysis: The first one is segmentation of medical images. The second one is learning with weak supervision in the context of medical imaging. The first main contribution of the thesis is a series of novel approaches for image segmentation. First, we propose a framework based on multi-scale image patches and random forests to segment small vessel disease (SVD) lesions on computed tomography (CT) images. This framework is validated in terms of spatial similarity, estimated lesion volumes, visual score ratings and was compared with human experts. The results showed that the proposed framework performs as well as human experts. Second, we propose a generic convolutional neural network (CNN) architecture called the DRINet for medical image segmentation. The DRINet approach is robust in three different types of segmentation tasks, which are multi-class cerebrospinal fluid (CSF) segmentation on brain CT images, multi-organ segmentation on abdomen CT images, and multi-class tumour segmentation on brain magnetic resonance (MR) images. Finally, we propose a CNN-based framework to segment acute ischemic lesions on diffusion weighted (DW)-MR images, where the lesions are highly variable in terms of position, shape, and size. Promising results were achieved on a large clinical dataset. The second main contribution of the thesis is two novel strategies for learning with weak supervision. First, we propose a novel strategy called context restoration to make use of the images without annotations. The context restoration strategy is a proxy learning process based on the CNN, which extracts semantic features from images without using annotations. It was validated on classification, localization, and segmentation problems and was superior to existing strategies. Second, we propose a patch-based framework using multi-instance learning to distinguish normal and abnormal SVD on CT images, where there are only coarse-grained labels available. Our framework was observed to work better than classic methods and clinical practice.Open Acces

    Improving nuclear medicine with deep learning and explainability: two real-world use cases in parkinsonian syndrome and safety dosimetry

    Get PDF
    Computer vision in the area of medical imaging has rapidly improved during recent years as a consequence of developments in deep learning and explainability algorithms. In addition, imaging in nuclear medicine is becoming increasingly sophisticated, with the emergence of targeted radiotherapies that enable treatment and imaging on a molecular level (“theranostics”) where radiolabeled targeted molecules are directly injected into the bloodstream. Based on our recent work, we present two use-cases in nuclear medicine as follows: first, the impact of automated organ segmentation required for personalized dosimetry in patients with neuroendocrine tumors and second, purely data-driven identification and verification of brain regions for diagnosis of Parkinson’s disease. Convolutional neural network was used for automated organ segmentation on computed tomography images. The segmented organs were used for calculation of the energy deposited into the organ-at-risk for patients treated with a radiopharmaceutical. Our method resulted in faster and cheaper dosimetry and only differed by 7% from dosimetry performed by two medical physicists. The identification of brain regions, however was analyzed on dopamine-transporter single positron emission tomography images using convolutional neural network and explainability, i.e., layer-wise relevance propagation algorithm. Our findings confirm that the extra-striatal brain regions, i.e., insula, amygdala, ventromedial prefrontal cortex, thalamus, anterior temporal cortex, superior frontal lobe, and pons contribute to the interpretation of images beyond the striatal regions. In current common diagnostic practice, however, only the striatum is the reference region, while extra-striatal regions are neglected. We further demonstrate that deep learning-based diagnosis combined with explainability algorithm can be recommended to support interpretation of this image modality in clinical routine for parkinsonian syndromes, with a total computation time of three seconds which is compatible with busy clinical workflow. Overall, this thesis shows for the first time that deep learning with explainability can achieve results competitive with human performance and generate novel hypotheses, thus paving the way towards improved diagnosis and treatment in nuclear medicine
    • …
    corecore