320 research outputs found

    Enhancing posterior based speech recognition systems

    Get PDF
    The use of local phoneme posterior probabilities has been increasingly explored for improving speech recognition systems. Hybrid hidden Markov model / artificial neural network (HMM/ANN) and Tandem are the most successful examples of such systems. In this thesis, we present a principled framework for enhancing the estimation of local posteriors, by integrating phonetic and lexical knowledge, as well as long contextual information. This framework allows for hierarchical estimation, integration and use of local posteriors from the phoneme up to the word level. We propose two approaches for enhancing the posteriors. In the first approach, phoneme posteriors estimated with an ANN (particularly multi-layer Perceptron – MLP) are used as emission probabilities in HMM forward-backward recursions. This yields new enhanced posterior estimates integrating HMM topological constraints (encoding specific phonetic and lexical knowledge), and long context. In the second approach, a temporal context of the regular MLP posteriors is post-processed by a secondary MLP, in order to learn inter and intra dependencies among the phoneme posteriors. The learned knowledge is integrated in the posterior estimation during the inference (forward pass) of the second MLP, resulting in enhanced posteriors. The use of resulting local enhanced posteriors is investigated in a wide range of posterior based speech recognition systems (e.g. Tandem and hybrid HMM/ANN), as a replacement or in combination with the regular MLP posteriors. The enhanced posteriors consistently outperform the regular posteriors in different applications over small and large vocabulary databases

    Proceedings of the ACM SIGIR Workshop ''Searching Spontaneous Conversational Speech''

    Get PDF

    Adaptation and Augmentation: Towards Better Rescoring Strategies for Automatic Speech Recognition and Spoken Term Detection

    Full text link
    Selecting the best prediction from a set of candidates is an essential problem for many spoken language processing tasks, including automatic speech recognition (ASR) and spoken keyword spotting (KWS). Generally, the selection is determined by a confidence score assigned to each candidate. Calibrating these confidence scores (i.e., rescoring them) could make better selections and improve the system performance. This dissertation focuses on using tailored language models to rescore ASR hypotheses as well as keyword search results for ASR-based KWS. This dissertation introduces three kinds of rescoring techniques: (1) Freezing most model parameters while fine-tuning the output layer in order to adapt neural network language models (NNLMs) from the written domain to the spoken domain. Experiments on a large-scale Italian corpus show a 30.2% relative reduction in perplexity at the word-cluster level and a 2.3% relative reduction in WER in a state-of-the-art Italian ASR system. (2) Incorporating source application information associated with speech queries. By exploring a range of adaptation model architectures, we achieve a 21.3% relative reduction in perplexity compared to a fine-tuned baseline. Initial experiments using a state-of-the-art Italian ASR system show a 3.0% relative reduction in WER on top of an unadapted 5-gram LM. In addition, human evaluations show significant improvements by using the source application information. (3) Marrying machine learning algorithms (classification and ranking) with a variety of signals to rescore keyword search results in the context of KWS for low-resource languages. These systems, built for the IARPA BABEL Program, enhance search performance in terms of maximum term-weighted value (MTWV) across six different low-resource languages: Vietnamese, Tagalog, Pashto, Turkish, Zulu and Tamil

    Deep Spoken Keyword Spotting:An Overview

    Get PDF
    Spoken keyword spotting (KWS) deals with the identification of keywords in audio streams and has become a fast-growing technology thanks to the paradigm shift introduced by deep learning a few years ago. This has allowed the rapid embedding of deep KWS in a myriad of small electronic devices with different purposes like the activation of voice assistants. Prospects suggest a sustained growth in terms of social use of this technology. Thus, it is not surprising that deep KWS has become a hot research topic among speech scientists, who constantly look for KWS performance improvement and computational complexity reduction. This context motivates this paper, in which we conduct a literature review into deep spoken KWS to assist practitioners and researchers who are interested in this technology. Specifically, this overview has a comprehensive nature by covering a thorough analysis of deep KWS systems (which includes speech features, acoustic modeling and posterior handling), robustness methods, applications, datasets, evaluation metrics, performance of deep KWS systems and audio-visual KWS. The analysis performed in this paper allows us to identify a number of directions for future research, including directions adopted from automatic speech recognition research and directions that are unique to the problem of spoken KWS

    Searching Spontaneous Conversational Speech:Proceedings of ACM SIGIR Workshop (SSCS2008)

    Get PDF

    Accessing spoken interaction through dialogue processing [online]

    Get PDF
    Zusammenfassung Unser Leben, unsere Leistungen und unsere Umgebung, alles wird derzeit durch Schriftsprache dokumentiert. Die rasante Fortentwicklung der technischen Möglichkeiten Audio, Bilder und Video aufzunehmen, abzuspeichern und wiederzugeben kann genutzt werden um die schriftliche Dokumentation von menschlicher Kommunikation, zum Beispiel Meetings, zu unterstützen, zu ergänzen oder gar zu ersetzen. Diese neuen Technologien können uns in die Lage versetzen Information aufzunehmen, die anderweitig verloren gehen, die Kosten der Dokumentation zu senken und hochwertige Dokumente mit audiovisuellem Material anzureichern. Die Indizierung solcher Aufnahmen stellt die Kerntechnologie dar um dieses Potential auszuschöpfen. Diese Arbeit stellt effektive Alternativen zu schlüsselwortbasierten Indizes vor, die Suchraumeinschränkungen bewirken und teilweise mit einfachen Mitteln zu berechnen sind. Die Indizierung von Sprachdokumenten kann auf verschiedenen Ebenen erfolgen: Ein Dokument gehört stilistisch einer bestimmten Datenbasis an, welche durch sehr einfache Merkmale bei hoher Genauigkeit automatisch bestimmt werden kann. Durch diese Art von Klassifikation kann eine Reduktion des Suchraumes um einen Faktor der Größenordnung 4­10 erfolgen. Die Anwendung von thematischen Merkmalen zur Textklassifikation bei einer Nachrichtendatenbank resultiert in einer Reduktion um einen Faktor 18. Da Sprachdokumente sehr lang sein können müssen sie in thematische Segmente unterteilt werden. Ein neuer probabilistischer Ansatz sowie neue Merkmale (Sprecherinitia­ tive und Stil) liefern vergleichbare oder bessere Resultate als traditionelle schlüsselwortbasierte Ansätze. Diese thematische Segmente können durch die vorherrschende Aktivität charakterisiert werden (erzählen, diskutieren, planen, ...), die durch ein neuronales Netz detektiert werden kann. Die Detektionsraten sind allerdings begrenzt da auch Menschen diese Aktivitäten nur ungenau bestimmen. Eine maximale Reduktion des Suchraumes um den Faktor 6 ist bei den verwendeten Daten theoretisch möglich. Eine thematische Klassifikation dieser Segmente wurde ebenfalls auf einer Datenbasis durchgeführt, die Detektionsraten für diesen Index sind jedoch gering. Auf der Ebene der einzelnen Äußerungen können Dialogakte wie Aussagen, Fragen, Rückmeldungen (aha, ach ja, echt?, ...) usw. mit einem diskriminativ trainierten Hidden Markov Model erkannt werden. Dieses Verfahren kann um die Erkennung von kurzen Folgen wie Frage/Antwort­Spielen erweitert werden (Dialogspiele). Dialogakte und ­spiele können eingesetzt werden um Klassifikatoren für globale Sprechstile zu bauen. Ebenso könnte ein Benutzer sich an eine bestimmte Dialogaktsequenz erinnern und versuchen, diese in einer grafischen Repräsentation wiederzufinden. In einer Studie mit sehr pessimistischen Annahmen konnten Benutzer eines aus vier ähnlichen und gleichwahrscheinlichen Gesprächen mit einer Genauigkeit von ~ 43% durch eine graphische Repräsentation von Aktivität bestimmt. Dialogakte könnte in diesem Szenario ebenso nützlich sein, die Benutzerstudie konnte aufgrund der geringen Datenmenge darüber keinen endgültigen Aufschluß geben. Die Studie konnte allerdings für detailierte Basismerkmale wie Formalität und Sprecheridentität keinen Effekt zeigen. Abstract Written language is one of our primary means for documenting our lives, achievements, and environment. Our capabilities to record, store and retrieve audio, still pictures, and video are undergoing a revolution and may support, supplement or even replace written documentation. This technology enables us to record information that would otherwise be lost, lower the cost of documentation and enhance high­quality documents with original audiovisual material. The indexing of the audio material is the key technology to realize those benefits. This work presents effective alternatives to keyword based indices which restrict the search space and may in part be calculated with very limited resources. Indexing speech documents can be done at a various levels: Stylistically a document belongs to a certain database which can be determined automatically with high accuracy using very simple features. The resulting factor in search space reduction is in the order of 4­10 while topic classification yielded a factor of 18 in a news domain. Since documents can be very long they need to be segmented into topical regions. A new probabilistic segmentation framework as well as new features (speaker initiative and style) prove to be very effective compared to traditional keyword based methods. At the topical segment level activities (storytelling, discussing, planning, ...) can be detected using a machine learning approach with limited accuracy; however even human annotators do not annotate them very reliably. A maximum search space reduction factor of 6 is theoretically possible on the databases used. A topical classification of these regions has been attempted on one database, the detection accuracy for that index, however, was very low. At the utterance level dialogue acts such as statements, questions, backchannels (aha, yeah, ...), etc. are being recognized using a novel discriminatively trained HMM procedure. The procedure can be extended to recognize short sequences such as question/answer pairs, so called dialogue games. Dialog acts and games are useful for building classifiers for speaking style. Similarily a user may remember a certain dialog act sequence and may search for it in a graphical representation. In a study with very pessimistic assumptions users are able to pick one out of four similar and equiprobable meetings correctly with an accuracy ~ 43% using graphical activity information. Dialogue acts may be useful in this situation as well but the sample size did not allow to draw final conclusions. However the user study fails to show any effect for detailed basic features such as formality or speaker identity

    Phoneme-based Video Indexing Using Phonetic Disparity Search

    Get PDF
    This dissertation presents and evaluates a method to the video indexing problem by investigating a categorization method that transcribes audio content through Automatic Speech Recognition (ASR) combined with Dynamic Contextualization (DC), Phonetic Disparity Search (PDS) and Metaphone indexation. The suggested approach applies genome pattern matching algorithms with computational summarization to build a database infrastructure that provides an indexed summary of the original audio content. PDS complements the contextual phoneme indexing approach by optimizing topic seek performance and accuracy in large video content structures. A prototype was established to translate news broadcast video into text and phonemes automatically by using ASR utterance conversions. Each phonetic utterance extraction was then categorized, converted to Metaphones, and stored in a repository with contextual topical information attached and indexed for posterior search analysis. Following the original design strategy, a custom parallel interface was built to measure the capabilities of dissimilar phonetic queries and provide an interface for result analysis. The postulated solution provides evidence of a superior topic matching when compared to traditional word and phoneme search methods. Experimental results demonstrate that PDS can be 3.7% better than the same phoneme query, Metaphone search proved to be 154.6% better than the same phoneme seek and 68.1 % better than the equivalent word search

    WAKE WORD DETECTION AND ITS APPLICATIONS

    Get PDF
    Always-on spoken language interfaces, e.g. personal digital assistants, rely on a wake word to start processing spoken input. Novel methods are proposed to train a wake word detection system from partially labeled training data, and to use it in on-line applications. In the system, the prerequisite of frame-level alignment is removed, permitting the use of un-transcribed training examples that are annotated only for the presence/absence of the wake word. Also, an FST-based decoder is presented to perform online detection. The suite of methods greatly improve the wake word detection performance across several datasets. A novel neural network for acoustic modeling in wake word detection is also investigated. Specifically, the performance of several variants of chunk-wise streaming Transformers tailored for wake word detection is explored, including looking-ahead to the next chunk, gradient stopping, different positional embedding methods and adding same-layer dependency between chunks. Experiments demonstrate that the proposed Transformer model outperforms the baseline convolutional network significantly with a comparable model size, while still maintaining linear complexity w.r.t. the input length. For the application of the detected wake word in ASR, the problem of improving speech recognition with the help of the detected wake word is investigated. Voice-controlled house-hold devices face the difficulty of performing speech recognition of device-directed speech in the presence of interfering background speech. Two end-to-end models are proposed to tackle this problem with information extracted from the anchored segment. The anchored segment refers to the wake word segment of the audio stream, which contains valuable speaker information that can be used to suppress interfering speech and background noise. A multi-task learning setup is also explored where the ideal mask, obtained from a data synthesis procedure, is used to guide the model training. In addition, a way to synthesize "noisy" speech from "clean" speech is also proposed to mitigate the mismatch between training and test data. The proposed methods show large word error reduction for Amazon Alexa live data with interfering background speech, without sacrificing the performance on clean speech

    Out-of-vocabulary spoken term detection

    Get PDF
    Spoken term detection (STD) is a fundamental task for multimedia information retrieval. A major challenge faced by an STD system is the serious performance reduction when detecting out-of-vocabulary (OOV) terms. The difficulties arise not only from the absence of pronunciations for such terms in the system dictionaries, but from intrinsic uncertainty in pronunciations, significant diversity in term properties and a high degree of weakness in acoustic and language modelling. To tackle the OOV issue, we first applied the joint-multigram model to predict pronunciations for OOV terms in a stochastic way. Based on this, we propose a stochastic pronunciation model that considers all possible pronunciations for OOV terms so that the high pronunciation uncertainty is compensated for. Furthermore, to deal with the diversity in term properties, we propose a termdependent discriminative decision strategy, which employs discriminative models to integrate multiple informative factors and confidence measures into a classification probability, which gives rise to minimum decision cost. In addition, to address the weakness in acoustic and language modelling, we propose a direct posterior confidence measure which replaces the generative models with a discriminative model, such as a multi-layer perceptron (MLP), to obtain a robust confidence for OOV term detection. With these novel techniques, the STD performance on OOV terms was improved substantially and significantly in our experiments set on meeting speech data
    corecore