2,285 research outputs found

    Reasoning & Querying – State of the Art

    Get PDF
    Various query languages for Web and Semantic Web data, both for practical use and as an area of research in the scientific community, have emerged in recent years. At the same time, the broad adoption of the internet where keyword search is used in many applications, e.g. search engines, has familiarized casual users with using keyword queries to retrieve information on the internet. Unlike this easy-to-use querying, traditional query languages require knowledge of the language itself as well as of the data to be queried. Keyword-based query languages for XML and RDF bridge the gap between the two, aiming at enabling simple querying of semi-structured data, which is relevant e.g. in the context of the emerging Semantic Web. This article presents an overview of the field of keyword querying for XML and RDF

    Web Queries: From a Web of Data to a Semantic Web?

    Get PDF

    Finding Patterns in a Knowledge Base using Keywords to Compose Table Answers

    Full text link
    We aim to provide table answers to keyword queries against knowledge bases. For queries referring to multiple entities, like "Washington cities population" and "Mel Gibson movies", it is better to represent each relevant answer as a table which aggregates a set of entities or entity-joins within the same table scheme or pattern. In this paper, we study how to find highly relevant patterns in a knowledge base for user-given keyword queries to compose table answers. A knowledge base can be modeled as a directed graph called knowledge graph, where nodes represent entities in the knowledge base and edges represent the relationships among them. Each node/edge is labeled with type and text. A pattern is an aggregation of subtrees which contain all keywords in the texts and have the same structure and types on node/edges. We propose efficient algorithms to find patterns that are relevant to the query for a class of scoring functions. We show the hardness of the problem in theory, and propose path-based indexes that are affordable in memory. Two query-processing algorithms are proposed: one is fast in practice for small queries (with small patterns as answers) by utilizing the indexes; and the other one is better in theory, with running time linear in the sizes of indexes and answers, which can handle large queries better. We also conduct extensive experimental study to compare our approaches with a naive adaption of known techniques.Comment: VLDB 201

    A Practically Efficient Algorithm for Generating Answers to Keyword Search over Data Graphs

    Get PDF
    In keyword search over a data graph, an answer is a non-redundant subtree that contains all the keywords of the query. A naive approach to producing all the answers by increasing height is to generalize Dijkstra's algorithm to enumerating all acyclic paths by increasing weight. The idea of freezing is introduced so that (most) non-shortest paths are generated only if they are actually needed for producing answers. The resulting algorithm for generating subtrees, called GTF, is subtle and its proof of correctness is intricate. Extensive experiments show that GTF outperforms existing systems, even ones that for efficiency's sake are incomplete (i.e., cannot produce all the answers). In particular, GTF is scalable and performs well even on large data graphs and when many answers are needed.Comment: Full version of ICDT'16 pape

    Social, Structured and Semantic Search

    Get PDF
    International audienceSocial content such as blogs, tweets, news etc. is a rich source of interconnected information. We identify a set of requirements for the meaningful exploitation of such rich content, and present a new data model, called S3, which is the first to satisfy them. S3 captures social relationships between users, and between users and content, but also the structure present in rich social content, as well as its semantics. We provide the first top-k keyword search algorithm taking into account the social, structured, and semantic dimensions and formally establish its termination and correctness. Experiments on real social networks demonstrate the efficiency and qualitative advantage of our algorithm through the joint exploitation of the social, structured, and semantic dimensions of S3
    • …
    corecore