111 research outputs found

    Superresolution Enhancement of Hyperspectral CHRIS/Proba Images With a Thin-Plate Spline Nonrigid Transform Model

    Get PDF
    Given the hyperspectral-oriented waveband configuration of multiangular CHRIS/Proba imagery, the scope of its application could widen if the present 18-m resolution would be improved. The multiangular images of CHRIS could be used as input for superresolution (SR) image reconstruction. A critical procedure in SR is an accurate registration of the low-resolution images. Conventional methods based on affine transformation may not be effective given the local geometric distortion in high off-nadir angular images. This paper examines the use of a non-rigid transform to improve the result of a nonuniform interpolation and deconvolution SR method. A scale-invariant feature transform is used to collect control points (CPs). To ensure the quality of CPs, a rigorous screening procedure is designed: 1) an ambiguity test; 2) the m-estimator sample consensus method; and 3) an iterative method using statistical characteristics of the distribution of random errors. A thin-plate spline (TPS) nonrigid transform is then used for the registration. The proposed registration method is examined with a Delaunay triangulation-based nonuniform interpolation and reconstruction SR method. Our results show that the TPS nonrigid transform allows accurate registration of angular images. SR results obtained from simulated LR images are evaluated using three quantitative measures, namely, relative mean-square error, structural similarity, and edge stability. Compared to the SR methods that use an affine transform, our proposed method performs better with all three evaluation measures. With a higher level of spatial detail, SR-enhanced CHRIS images might be more effective than the original data in various applications.JRC.H.7-Climate Risk Managemen

    G3Reg: Pyramid Graph-based Global Registration using Gaussian Ellipsoid Model

    Full text link
    This study introduces a novel framework, G3Reg, for fast and robust global registration of LiDAR point clouds. In contrast to conventional complex keypoints and descriptors, we extract fundamental geometric primitives including planes, clusters, and lines (PCL) from the raw point cloud to obtain low-level semantic segments. Each segment is formulated as a unified Gaussian Ellipsoid Model (GEM) by employing a probability ellipsoid to ensure the ground truth centers are encompassed with a certain degree of probability. Utilizing these GEMs, we then present a distrust-and-verify scheme based on a Pyramid Compatibility Graph for Global Registration (PAGOR). Specifically, we establish an upper bound, which can be traversed based on the confidence level for compatibility testing to construct the pyramid graph. Gradually, we solve multiple maximum cliques (MAC) for each level of the graph, generating numerous transformation candidates. In the verification phase, we adopt a precise and efficient metric for point cloud alignment quality, founded on geometric primitives, to identify the optimal candidate. The performance of the algorithm is extensively validated on three publicly available datasets and a self-collected multi-session dataset, without changing any parameter settings in the experimental evaluation. The results exhibit superior robustness and real-time performance of the G3Reg framework compared to state-of-the-art methods. Furthermore, we demonstrate the potential for integrating individual GEM and PAGOR components into other algorithmic frameworks to enhance their efficacy. To advance further research and promote community understanding, we have publicly shared the source code.Comment: Under revie

    Transformation Decoupling Strategy based on Screw Theory for Deterministic Point Cloud Registration with Gravity Prior

    Full text link
    Point cloud registration is challenging in the presence of heavy outlier correspondences. This paper focuses on addressing the robust correspondence-based registration problem with gravity prior that often arises in practice. The gravity directions are typically obtained by inertial measurement units (IMUs) and can reduce the degree of freedom (DOF) of rotation from 3 to 1. We propose a novel transformation decoupling strategy by leveraging screw theory. This strategy decomposes the original 4-DOF problem into three sub-problems with 1-DOF, 2-DOF, and 1-DOF, respectively, thereby enhancing the computation efficiency. Specifically, the first 1-DOF represents the translation along the rotation axis and we propose an interval stabbing-based method to solve it. The second 2-DOF represents the pole which is an auxiliary variable in screw theory and we utilize a branch-and-bound method to solve it. The last 1-DOF represents the rotation angle and we propose a global voting method for its estimation. The proposed method sequentially solves three consensus maximization sub-problems, leading to efficient and deterministic registration. In particular, it can even handle the correspondence-free registration problem due to its significant robustness. Extensive experiments on both synthetic and real-world datasets demonstrate that our method is more efficient and robust than state-of-the-art methods, even when dealing with outlier rates exceeding 99%

    Consensus Maximization: Theoretical Analysis and New Algorithms

    Get PDF
    The core of many computer vision systems is model fitting, which estimates a particular mathematical model given a set of input data. Due to the imperfection of the sensors, pre-processing steps and/or model assumptions, computer vision data usually contains outliers, which are abnormally distributed data points that can heavily reduce the accuracy of conventional model fitting methods. Robust fitting aims to make model fitting insensitive to outliers. Consensus maximization is one of the most popular paradigms for robust fitting, which is the main research subject of this thesis. Mathematically, consensus maximization is an optimization problem. To understand the theoretical hardness of this problem, a thorough analysis about its computational complexity is first conducted. Motivated by the theoretical analysis, novel techniques that improve different types of algorithms are then introduced. On one hand, an efficient and deterministic optimization approach is proposed. Unlike previous deterministic approaches, the proposed one does not rely on the relaxation of the original optimization problem. This property makes it much more effective at refining an initial solution. On the other hand, several techniques are proposed to significantly accelerate consensus maximization tree search. Tree search is one of the most efficient global optimization approaches for consensus maximization. Hence, the proposed techniques greatly improve the practicality of globally optimal consensus maximization algorithms. Finally, a consensus-maximization-based method is proposed to register terrestrial LiDAR point clouds. It demonstrates how to surpass the general theoretical hardness by using special problem structure (the rotation axis returned by the sensors), which simplify the problem and lead to application-oriented algorithms that are both efficient and globally optimal.Thesis (Ph.D.) -- University of Adelaide, School of Computer Science, 202

    IMAGE ORIENTATION WITH A HYBRID PIPELINE ROBUST TO ROTATIONS AND WIDE-BASELINES

    Get PDF
    The extraction of reliable and repeatable interest points among images is a fundamental step for automatic image orientation (Structure-From-Motion). Despite recent progresses, open issues in challenging conditions - such as wide baselines and strong light variations - are still present. Over the years, traditional hand-crafted methods have been paired by learning-based approaches, progressively updating the state-of-the-art according to recent benchmarks. Notwithstanding these advancements, learning-based methods are often not suitable for real photogrammetric surveys due to their lack of rotation invariance, a fundamental requirement for these specific applications. This paper proposes a novel hybrid image matching pipeline which employs both hand-crafted and deep-based components, to extract reliable rotational invariant keypoints optimized for wide-baseline scenarios. The proposed hybrid pipeline was compared with other hand-crafted and learning-based state-of-the-art approaches on some photogrammetric datasets using metric ground-truth data. Results show that the proposed hybrid matching pipeline has high accuracy and appeared to be the only method among the evaluated ones able to register images in the most challenging wide-baseline scenarios
    • …
    corecore