3,389 research outputs found

    Sequential Keystroke Behavioral Biometrics for Mobile User Identification via Multi-view Deep Learning

    Full text link
    With the rapid growth in smartphone usage, more organizations begin to focus on providing better services for mobile users. User identification can help these organizations to identify their customers and then cater services that have been customized for them. Currently, the use of cookies is the most common form to identify users. However, cookies are not easily transportable (e.g., when a user uses a different login account, cookies do not follow the user). This limitation motivates the need to use behavior biometric for user identification. In this paper, we propose DEEPSERVICE, a new technique that can identify mobile users based on user's keystroke information captured by a special keyboard or web browser. Our evaluation results indicate that DEEPSERVICE is highly accurate in identifying mobile users (over 93% accuracy). The technique is also efficient and only takes less than 1 ms to perform identification.Comment: 2017 Joint European Conference on Machine Learning and Knowledge Discovery in Database

    Keystroke Biometrics in Response to Fake News Propagation in a Global Pandemic

    Full text link
    This work proposes and analyzes the use of keystroke biometrics for content de-anonymization. Fake news have become a powerful tool to manipulate public opinion, especially during major events. In particular, the massive spread of fake news during the COVID-19 pandemic has forced governments and companies to fight against missinformation. In this context, the ability to link multiple accounts or profiles that spread such malicious content on the Internet while hiding in anonymity would enable proactive identification and blacklisting. Behavioral biometrics can be powerful tools in this fight. In this work, we have analyzed how the latest advances in keystroke biometric recognition can help to link behavioral typing patterns in experiments involving 100,000 users and more than 1 million typed sequences. Our proposed system is based on Recurrent Neural Networks adapted to the context of content de-anonymization. Assuming the challenge to link the typed content of a target user in a pool of candidate profiles, our results show that keystroke recognition can be used to reduce the list of candidate profiles by more than 90%. In addition, when keystroke is combined with auxiliary data (such as location), our system achieves a Rank-1 identification performance equal to 52.6% and 10.9% for a background candidate list composed of 1K and 100K profiles, respectively.Comment: arXiv admin note: text overlap with arXiv:2004.0362

    Outflanking and securely using the PIN/TAN-System

    Full text link
    The PIN/TAN-system is an authentication and authorization scheme used in e-business. Like other similar schemes it is successfully attacked by criminals. After shortly classifying the various kinds of attacks we accomplish malicious code attacks on real World Wide Web transaction systems. In doing so we find that it is really easy to outflank these systems. This is even supported by the users' behavior. We give a few simple behavior rules to improve this situation. But their impact is limited. Also the providers support the attacks by having implementation flaws in their installations. Finally we show that the PIN/TAN-system is not suitable for usage in highly secure applications.Comment: 7 pages; 2 figures; IEEE style; final versio
    corecore