880 research outputs found

    Enterprise network convergence: path to cost optimization

    Get PDF
    During the past two decades, telecommunications has evolved a great deal. In the eighties, people were using television, radio and telephone as their communication systems. Eventually, the introduction of the Internet and the WWW immensely transformed the telecommunications industry. This internet revolution brought about a huge change in the way businesses communicated and operated. Enterprise networks now had an increasing demand for more bandwidth as they started to embrace newer technologies. The requirements of the enterprise networks grew as the applications and services that were used in the network expanded. This stipulation for fast and high performance communication systems has now led to the emergence of converged network solutions. Enterprises across the globe are investigating new ways to implement voice, video, and data over a single network for various reasons – to optimize network costs, to restructure their communication system, to extend next generation networking abilities, or to bridge the gap between their corporate network and the existing technological progress. To date, organizations had multiple network services to support a range of communication needs. Investing in this type of multiple communication infrastructures limits the networks ability to provide resourceful bandwidth optimization services throughout the system. Thus, as the requirements for the corporate networks to handle dynamic traffic grow day by day, the need for a more effective and efficient network arises. A converged network is the solution for enterprises aspiring to employ advanced applications and innovative services. This thesis will emphasize the importance of converging network infrastructure and prove that it leads to cost savings. It discusses the characteristics, architecture, and relevant protocols of the voice, data and video traffic over both traditional infrastructure and converged architecture. While IP-based networks present excellent quality for non real-time data networking, the network by itself is not capable of providing reliable, quality and secure services for real-time traffic. In order for IP networks to perform reliable and timely transmission of real-time data, additional mechanisms to reduce delay, jitter and packet loss are required. Therefore, this thesis will also discuss the important mechanisms for running real-time traffic like voice and video over an IP network. Lastly, it will also provide an example of an enterprise network specifications (voice, video and data), and present an in depth cost analysis of a typical network vs. a converged network to prove that converged infrastructures provide significant savings

    Future of asynchronous transfer mode networking

    Get PDF
    The growth of Asynchronous Transfer Mode (ATM) was considered to be the ideal carrier of the high bandwidth applications like video on demand and multimedia e-learning. ATM emerged commercially in the beginning of the 1990\u27s. It was designed to provide a different quality of service at a speed up 100 Gbps for both real time and non real time application. The turn of the 90\u27s saw a variety of technologies being developed. This project analyzes these technologies, compares them to the Asynchronous Transfer Mode and assesses the future of ATM

    Technology Directions for the 21st Century

    Get PDF
    New technologies will unleash the huge capacity of fiber-optic cable to meet growing demands for bandwidth. Companies will continue to replace private networks with public network bandwidth-on-demand. Although asynchronous transfer mode (ATM) is the transmission technology favored by many, its penetration will be slower than anticipated. Hybrid networks - e.g., a mix of ATM, frame relay, and fast Ethernet - may predominate, both as interim and long-term solutions, based on factors such as availability, interoperability, and cost. Telecommunications equipment and services prices will decrease further due to increased supply and more competition. Explosive Internet growth will continue, requiring additional backbone transmission capacity and enhanced protocols, but it is not clear who will fund the upgrade. Within ten years, space-based constellations of satellites in Low Earth orbit (LEO) will serve mobile users employing small, low-power terminals. 'Little LEO's' will provide packet transmission services and geo-position determination. 'Big LEO's' will function as global cellular telephone networks, with some planning to offer video and interactive multimedia services. Geosynchronous satellites also are proposed for mobile voice grade links and high-bandwidth services. NASA may benefit from resulting cost reductions in components, space hardware, launch services, and telecommunications services

    Sustaining a Vertically Disintegrated Network through a Bearer Service Market

    Get PDF
    Based upon the Internet perspective, this chapter will attempt to clarify and revise several ideas about the separation between infrastructure facilities and service offerings in digital communications networks. The key notions that we will focus on in this paper are: i) the bearer service as a technology-independent interface which exports blind network functionality to applications development; ii) the sustainability of an independent market for bearer service and the organizational consequences associated with such a market

    Satellite Networks: Architectures, Applications, and Technologies

    Get PDF
    Since global satellite networks are moving to the forefront in enhancing the national and global information infrastructures due to communication satellites' unique networking characteristics, a workshop was organized to assess the progress made to date and chart the future. This workshop provided the forum to assess the current state-of-the-art, identify key issues, and highlight the emerging trends in the next-generation architectures, data protocol development, communication interoperability, and applications. Presentations on overview, state-of-the-art in research, development, deployment and applications and future trends on satellite networks are assembled

    LHC Communication Infrastructure: Recommendations from the working group

    Get PDF
    The LHC Working Group for Communication Infrastructure (CIWG) was established in May 1999 with members from the accelerator sector, the LHC physics experiments, the general communication services, the technical services and other LHC working groups. It has spent a year collecting user requirements and at the same time explored and evaluated possible solutions appropriate to the LHC. A number of technical recommendations were agreed, and areas where more work is required were identified. The working group also put forward proposals for organizational changes needed to allow the design project to continue and to prepare for the installation and commissioning phase of the LHC communication infrastructure. This paper reports on the work done and explains the motivation behind the recommendations

    Networking vendor strategy and competition and their impact on enterprise network design and implementation

    Get PDF
    Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science; in conjunction with the Leaders for Manufacturing Program at MIT, 2006.Includes bibliographical references (leaves 93-99).While a significant amount of literature exists that discuss platform strategies used by general IT vendors, less of it has to do with corporate networking technology vendors specifically. However, many of the same strategic principles that are used to analyze general IT vendors can also be used to analyze networking vendors. This paper extends the platform model that was developed by Michael Cusumano and Annabel Gawer to networking vendors, outlining the unique strategic aspects that the networking market possesses. The paper then reviews the strategy of the first dominant corporate datacom vendor, IBM, how it achieved its dominance, and how it lost it. The paper then discusses the strategies of various vendors who attempted to replace IBM as the dominant networking platform vendor and how they failed to do so. Finally, the paper discusses Cisco Systems, a vendor who did manage to achieve a level of dominance that parallels IBM's, and how that company has utilized its strategy to achieve and maintain its current dominance. Finally, Cisco's current strategic challenges are discussed. The impact of the strategies of the various vendors on the evolution of corporate networking is also discussed.by Ray Fung.S.M.M.B.A

    Solution strategies of service fulfilment Operation Support Systems for Next Generation Networks

    Get PDF
    Suomalainen operatiivisten tukijärjestelmien toimittaja tarjoaa ratkaisuja palvelujen aktivointiin, verkkoresurssien hallintaan ja laskutustietojen keruuseen. Nämä ratkaisut ovat pääosin käytössä langattomissa verkoissa. Tässä tutkimuksessa arvioidaan kyseisten ratkaisujen soveltuvuutta palvelutoimitusprosessien automatisointiin tulevaisuuden verkkoympäristöissä. Tarkastelun kohteena ovat runko- ja pääsyverkkojen kiinteät teknologiat, joiden suosio saavuttaa huippunsa seuraavan 5-10 vuoden aikana. Näissä verkoissa palvelujen, kuten yritys-VPN:n tai kuluttajan laajakaistan, aktivointi vaatii monimutkaisen toimitusprosessin, jonka tueksi tarvitaan ensiluokkaista tukijärjestelmää. Teknologiakatsauksen jälkeen tutkimuksessa verrataan viitteellistä tuoteportfoliota saatavilla oleviin operatiivisten tukijärjestelmien arkkitehtuurisiin viitekehyksiin, ja analysoidaan sen soveltuvuus tulevaisuuden verkkoympäristöjen palvelutoimitusprosessin automatisointiin. Myös palvelutoimitusprosessien automatisointiin soveltuvien tukijärjestelmien markkinatilanne arvioidaan, ja tämän perusteella tutkitaan optimaalisinta sovellusstrategiaa. Lopulta voidaan päätellä, että tuoteportfoliolle parhaiten soveltuvin sovellusalue on kuluttajan laajakaistan, ja siihen liittyvien kehittyneempien IP-palveluiden palvelutoimitusprosessien automatisointi.A Finnish Operation Support Systems (OSS) vendor provides solutions for service activation, network inventory and event mediation. These solutions have mostly been deployed in mobile environments. In this thesis it will be studied how feasible it is to use similar solutions for service fulfilment in Next Generation Networks (NGN). NGN is a broad term that describes some key architectural evolutions in telecommunication core and access networks that will be deployed over the next 5 to 10 years. In these networks service, e.g. Triple Play or Virtual Private Network (VPN), activations require an extensive service fulfilment process that must be supported by first-class OSS. After introducing the NGN technologies, the research compares a reference product portfolio to available service fulfilment frameworks and evaluates the applicability. The study analyses the current state of service fulfilment OSS markets and evaluates various solution strategies. Eventually it will be concluded that the most interesting and adequate solution scenario is residential broadband, including value-added IP services

    IP and ATM integration: A New paradigm in multi-service internetworking

    Get PDF
    ATM is a widespread technology adopted by many to support advanced data communication, in particular efficient Internet services provision. The expected challenges of multimedia communication together with the increasing massive utilization of IP-based applications urgently require redesign of networking solutions in terms of both new functionalities and enhanced performance. However, the networking context is affected by so many changes, and to some extent chaotic growth, that any approach based on a structured and complex top-down architecture is unlikely to be applicable. Instead, an approach based on finding out the best match between realistic service requirements and the pragmatic, intelligent use of technical opportunities made available by the product market seems more appropriate. By following this approach, innovations and improvements can be introduced at different times, not necessarily complying with each other according to a coherent overall design. With the aim of pursuing feasible innovations in the different networking aspects, we look at both IP and ATM internetworking in order to investigating a few of the most crucial topics/ issues related to the IP and ATM integration perspective. This research would also address various means of internetworking the Internet Protocol (IP) and Asynchronous Transfer Mode (ATM) with an objective of identifying the best possible means of delivering Quality of Service (QoS) requirements for multi-service applications, exploiting the meritorious features that IP and ATM have to offer. Although IP and ATM often have been viewed as competitors, their complementary strengths and limitations from a natural alliance that combines the best aspects of both the technologies. For instance, one limitation of ATM networks has been the relatively large gap between the speed of the network paths and the control operations needed to configure those data paths to meet changing user needs. IP\u27s greatest strength, on the other hand, is the inherent flexibility and its capacity to adapt rapidly to changing conditions. These complementary strengths and limitations make it natural to combine IP with ATM to obtain the best that each has to offer. Over time many models and architectures have evolved for IP/ATM internetworking and they have impacted the fundamental thinking in internetworking IP and ATM. These technologies, architectures, models and implementations will be reviewed in greater detail in addressing possible issues in integrating these architectures s in a multi-service, enterprise network. The objective being to make recommendations as to the best means of interworking the two in exploiting the salient features of one another to provide a faster, reliable, scalable, robust, QoS aware network in the most economical manner. How IP will be carried over ATM when a commercial worldwide ATM network is deployed is not addressed and the details of such a network still remain in a state of flux to specify anything concrete. Our research findings culminated with a strong recommendation that the best model to adopt, in light of the impending integrated service requirements of future multi-service environments, is an ATM core with IP at the edges to realize the best of both technologies in delivering QoS guarantees in a seamless manner to any node in the enterprise
    corecore