391 research outputs found

    Using airborne LiDAR Survey to explore historic-era archaeological landscapes of Montserrat in the eastern Caribbean

    Get PDF
    This article describes what appears to be the first archaeological application of airborne LiDAR survey to historic-era landscapes in the Caribbean archipelago, on the island of Montserrat. LiDAR is proving invaluable in extending the reach of traditional pedestrian survey into less favorable areas, such as those covered by dense neotropical forest and by ashfall from the past two decades of active eruptions by the Soufrière Hills volcano, and to sites in localities that are inaccessible on account of volcanic dangers. Emphasis is placed on two aspects of the research: first, the importance of ongoing, real-time interaction between the LiDAR analyst and the archaeological team in the field; and second, the advantages of exploiting the full potential of the three-dimensional LiDAR point cloud data for purposes of the visualization of archaeological sites and features

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Towards Optimization of Anomaly Detection Using Autonomous Monitors in DevOps

    Get PDF
    Continuous practices including continuous integration, continuous testing, and continuous deployment are foundations of many software development initiatives. Another very popular industrial concept, DevOps, promotes automation, collaboration, and monitoring, to even more empower development processes. The scope of this thesis is on continuous monitoring and the data collected through continuous measurement in operations as it may carry very valuable details on the health of the software system. Aim: We aim to explore and improve existing solutions for managing monitoring data in operations, instantiated in the specific industry context. Specifically, we collaborated with a Swedish company responsible for ticket management and sales in public transportation to identify challenges in the information flow from operations to development and explore approaches for improved data management inspired by state-of-the-art machine learning (ML) solutions.Research approach: Our research activities span from practice to theory and from problem to solution domain, including problem conceptualization, solution design, instantiation, and empirical validation. This complies with the main principles of the design science paradigm mainly used to frame problem-driven studies aiming to improve specific areas of practice. Results: We present identified problem instances in the case company considering the general goal of better incorporating feedback from operations to development and corresponding solution design for reducing information overflow, e.g. alert flooding, by introducing a new element, a smart filter, in the feedback loop. Therefore, we propose a simpler version of the solution design based on ML decision rules as well as a more advanced deep learning (DL) alternative. We have implemented and partially evaluated the former solution design while we present the plan for implementation and optimization of the DL version of the smart filter, as a kind of autonomous monitor. Conclusion: We propose using a smart filter to tighten and improve feedback from operations to development. The smart filter utilizes operations data to discover anomalies and timely report alerts on strange and unusual system's behavior. Full-scale implementation and empirical evaluation of the smart filter based on the DL solution will be carried out in future work

    Возвращение жанра: тенденции развития современного травелога

    Get PDF
    Travelogue as a personal journey suggests a high degree of reflection. The writers have re­ferred to this genre at all times. However, at the turn of the 20th - 21st centuries, it has become extremely popular due to its transformation into a multi-level, syncretic genre. A travelogue author fixes his personal experience of movements in the external space, creates the model of the world and broadcasts an individual concept of the spiritual journey. The genre of travelogue gets definite ethnic and gender-related overtones in much of today's Russian-language literature, helping the latter get across to a wider range of readers and transforming it into a mass culture phenomenon.В статье рассматривается жанр травелога и его становление в современной русской литературе

    The MeqTrees software system and its use for third-generation calibration of radio interferometers

    Full text link
    The formulation of the radio interferometer measurement equation (RIME) by Hamaker et al. has provided us with an elegant mathematical apparatus for better understanding, simulation and calibration of existing and future instruments. The calibration of the new radio telescopes (LOFAR, SKA) would be unthinkable without the RIME formalism, and new software to exploit it. MeqTrees is designed to implement numerical models such as the RIME, and to solve for arbitrary subsets of their parameters. The technical goal of MeqTrees is to provide a tool for rapid implementation of such models, while offering performance comparable to hand-written code. We are also pursuing the wider goal of increasing the rate of evolution of radio astronomical software, by offering a tool for rapid experimentation and exchange of ideas. MeqTrees is implemented as a Python-based front-end called the meqbrowser, and an efficient (C++-based) computational back-end called the meqserver. Numerical models are defined on the front-end via a Python-based Tree Definition Language (TDL), then rapidly executed on the back-end. The use of TDL facilitates an extremely short turn-around time for experimentation with new ideas. This is also helped by unprecedented visualization capabilities for all final and intermediate results. A flexible data model and a number of important optimizations in the back-end ensures that the numerical performance is comparable to that of hand-written code. MeqTrees is already widely used as the simulation tool for new instruments (LOFAR, SKA) and technologies (focal plane arrays). It has demonstrated that it can achieve a noise-limited dynamic range in excess of a million, on WSRT data. It is the only package that is specifically designed to handle what we propose to call third-generation calibration (3GC), which is needed for the new generation of giant radio telescopes.Comment: 15 pages; 14 figure

    Proceedings of the 9th Arab Society for Computer Aided Architectural Design (ASCAAD) international conference 2021 (ASCAAD 2021): architecture in the age of disruptive technologies: transformation and challenges.

    Get PDF
    The ASCAAD 2021 conference theme is Architecture in the age of disruptive technologies: transformation and challenges. The theme addresses the gradual shift in computational design from prototypical morphogenetic-centered associations in the architectural discourse. This imminent shift of focus is increasingly stirring a debate in the architectural community and is provoking a much needed critical questioning of the role of computation in architecture as a sole embodiment and enactment of technical dimensions, into one that rather deliberately pursues and embraces the humanities as an ultimate aspiration
    corecore