15,580 research outputs found

    DESIGN TECHNIQUES FOR HIGH-EFFICIENCY MICROWAVE POWER AMPLIFIERS

    Get PDF
    The increasingly diffusion of wireless devices during the last years has established a sort of “second youth” of analog electronics related to telecommunication systems. Nowadays, in fact, electronic equipments for wireless communication are exploited not only for niche sectors as strategic applications (e.g., military, satellite and so on): as a matter of fact, a large number of commercial devices exploit wireless transmitting systems operating at RF and microwave frequencies. As a consequence, increasing interest has been focused by academic and industrial communities on RF and microwave circuits and in particular on power amplifiers, that represent the core of a wireless transmitting system. In this context, more and more challenging performance are demanded to such a kind of circuit, especially in terms of output power, bandwidth and efficiency. The present thesis work has been focused on RF and microwave power amplifier design that, as said before, represents one of most actual and attractive research theme. Several aspects of such topic have been covered, from the analysis of different design techniques available in literature to the development of an innovative design approach, providing many experimental results related to realized power amplifiers. Particular emphasis has been given to high-efficiency power amplifier classes of operation, that represent an hot issue in a world more and more devoted to the energy conservation. Moreover, electron device degradation phenomena were investigated, that although not directly accounted for, represent a key issue in microwave power amplifier design. In particular, the first chapter of this thesis provides an overview of commonly adopted design methodologies for microwave power amplifier, analyzing the advantages and the critical aspects of such approaches. Moreover, nonlinear device modeling issues oriented to microwave power amplifier design have been dealt with. In the second chapter, an innovative design technique is presented. It is based on experimental electron device nonlinear characterization, carried out by means of a low-frequency large signal measurement setup, in conjunction with the modeling of high-frequency nonlinear dynamic phenomena. Several design examples have been carried out by exploiting the proposed approach that confirm the effectiveness of the design technique. In the third chapter, the proposed design methodology has been applied to high-efficiency power amplifier classes of operations, that need to control the device terminations not only at the fundamental frequency, but also at harmonics. Two high-efficiency power amplifiers have been realized by adopting such a technique, demonstrating performance in terms of output power and efficiency comparable with the state of the art. Finally, in chapter four an important power amplifier design aspect has been dealt with, related to degradation and performance limitation of microwave electron devices. Several experimental results have been carried out by exploiting a new measurement setup, oriented to the characterization of degradation phenomena of microwave electron devices

    Integrated 3D glass modules with high-Q inductors and thermal dissipation for RF front-end applications

    Get PDF
    The objectives of this research are to model, design, fabricate and validate high quality factor (Q > 100 at 2.4 GHz for 3-10 nH/mm2) inductors and innovative thermal structures with copper through-package vias to maintain low junction temperatures of < 85 oC in power amplifiers, and demonstrate ultra-thin fully-integrated dual-band (2.4 GHz/ 5GHz) WLAN modules with passive-active integration on ultra-thin glass substrates with double-side RF circuits and copper through-package vias (TPVs). Today’s RF subsystems are 2D single or multichip packages made of either organic laminates or LTCC (low temperature co-fired ceramic) substrates. The need for form-factor reduction in RF subsystems in both z and x-y direction has led to the evolution of embedded die-package architectures in thin laminates with dies facing up or down. This also reduces insertion loss and improves signal integrity by minimizing electromagnetic interference (EMI), package parasitics and routing issues. For further improvement in performance and miniaturization, glass is proposed as an ideal substrate for RF module integration. However, major design and fabrication challenges need to be addressed to achieve ultra-thin high Q RF components and also enable IC cooling to eliminate hotspots on glass substrates, which forms the key focus of this thesis.Ph.D

    The Expanded Very Large Array

    Full text link
    In almost 30 years of operation, the Very Large Array (VLA) has proved to be a remarkably flexible and productive radio telescope. However, the basic capabilities of the VLA have changed little since it was designed. A major expansion utilizing modern technology is currently underway to improve the capabilities of the VLA by at least an order of magnitude in both sensitivity and in frequency coverage. The primary elements of the Expanded Very Large Array (EVLA) project include new or upgraded receivers for continuous frequency coverage from 1 to 50 GHz, new local oscillator, intermediate frequency, and wide bandwidth data transmission systems to carry signals with 16 GHz total bandwidth from each antenna, and a new digital correlator with the capability to process this bandwidth with an unprecedented number of frequency channels for an imaging array. Also included are a new monitor and control system and new software that will provide telescope ease of use. Scheduled for completion in 2012, the EVLA will provide the world research community with a flexible, powerful, general-purpose telescope to address current and future astronomical issues.Comment: Added journal reference: published in Proceedings of the IEEE, Special Issue on Advances in Radio Astronomy, August 2009, vol. 97, No. 8, 1448-1462 Six figures, one tabl

    A software defined radio receiver test-bed

    Get PDF

    Generating All Two-MOS-Transistor Amplifiers Leads to New Wide-Band LNAs

    Get PDF
    This paper presents a methodology that systematically generates all 2-MOS-transistor wide-band amplifiers, assuming that MOSFET is exploited as a voltage-controlled current source. This leads to new circuits. Their gain and noise factor have been compared to well-known wide-band amplifiers. One of the new circuits appears to have a relatively low noise factor, which is also gain independent. Based on this new circuit, a 50-900 MHz variable-gain wide-band LNA has been designed in 0.35-µm CMOS. Measurements show a noise figure between 4.3 and 4.9 dB for gains from 6 to 11 dB. These values are more than 2 dB lower than the noise figure of the wide-band common-gate LNA for the same input matching, power consumption, and voltage gain. IIP2 and IIP3 are better than 23.5 and 14.5 dBm, respectively, while the LNA drains only 1.5 mA at 3.3 V

    System-Level Integrated Circuit (SLIC) development for phased array antenna applications

    Get PDF
    A microwave/millimeter wave system-level integrated circuit (SLIC) being developed for use in phased array antenna applications is described. The program goal is to design, fabricate, test, and deliver an advanced integrated circuit that merges radio frequency (RF) monolithic microwave integrated circuit (MMIC) technologies with digital, photonic, and analog circuitry that provide control, support, and interface functions. As a whole, the SLIC will offer improvements in RF device performance, uniformity, and stability while enabling accurate, rapid, repeatable control of the RF signal. Furthermore, the SLIC program addresses issues relating to insertion of solid state devices into antenna systems, such as the reduction in number of bias, control, and signal lines. Program goals, approach, and status are discussed

    Reliability and fault tolerance in the European ADS project

    Full text link
    After an introduction to the theory of reliability, this paper focuses on a description of the linear proton accelerator proposed for the European ADS demonstration project. Design issues are discussed and examples of cases of fault tolerance are given.Comment: 14 pages, contribution to the CAS - CERN Accelerator School: Course on High Power Hadron Machines; 24 May - 2 Jun 2011, Bilbao, Spai

    Thermal Noise Canceling in LNAs: A Review

    Get PDF
    Most wide-band amplifiers suffer from a fundamental trade-off between noise figure NF and source impedance matching, which limits NF to values typically above 3dB. Recently, a feed-forward noise canceling technique has been proposed to break this trade-off. This paper reviews the principle of the technique and its key properties. Although the technique has been applied to wideband CMOS LNAs, it can just as well be implemented exploiting transconductance elements realized with other types of transistors

    Spacecraft Antennas

    Get PDF
    Some of the various categories of issues that must be considered in the selection and design of spacecraft antennas for a Personal Access Satellite System (PASS) are addressed, and parametric studies for some of the antenna concepts to help the system designer in making the most appropriate antenna choice with regards to weight, size, and complexity, etc. are provided. The question of appropriate polarization for the spacecraft as well as for the User Terminal Antenna required particular attention and was studied in some depth. Circular polarization seems to be the favored outcome of this study. Another problem that has generally been a complicating factor in designing the multiple beam reflector antennas, is the type of feeds (single vs. multiple element and overlapping vs. non-overlapping clusters) needed for generating the beams. This choice is dependent on certain system design factors, such as the required frequency reuse, acceptable interbeam isolation, antenna efficiency, number of beams scanned, and beam-forming network (BFN) complexity. This issue is partially addressed, but is not completely resolved. Indications are that it may be possible to use relatively simple non-overlapping clusters of only a few elements, unless a large frequency reuse and very stringent isolation levels are required
    • …
    corecore