9,169 research outputs found

    Key individual identification using dimensional relevance in the stratum of networks

    Get PDF
    Different aspects of social networks have increasingly been under investigation from last decades. The social network studies range in various viewpoints from the structural and node measures to the information diffusion processes. The key node identification has been one of the limelight topics of social network analysis (SNA) specifically in a discipline like politics, criminology, marketing and etc. This research uses multiple networks constructed from the different social sites and real-life relationships to cover the multi-dimensional aspects of human relations. In the multi-relationship system, the different dimensions may differ in terms of relevance and weight. One of the most intriguing aspects of key node identification in the multi-dimensional system can be the consideration of dimensions relevance. This research covers the methodology to optimise the weights of dimensions using a number of centrality measures from each network layer covering multiple different objectives of interest. The study formulates the novel weighted feature set pertaining to layer relevance calculated based on layer relative importance through particle swarm optimization techniques. The framework applied ensemble-based approach on the weighted feature set along with node characteristics to predict key nodes in a network. The results are validated against ground truth data and accuracy achieved is promising

    Systems modeling of white matter microstructural abnormalities in Alzheimer's disease

    Get PDF
    INTRODUCTION: Microstructural abnormalities in white matter (WM) are often reported in Alzheimer's disease (AD). However, it is unclear which brain regions have the strongest WM changes in presymptomatic AD and what biological processes underlie WM abnormality during disease progression. METHODS: We developed a systems biology framework to integrate matched diffusion tensor imaging (DTI), genetic and transcriptomic data to investigate regional vulnerability to AD and identify genetic risk factors and gene subnetworks underlying WM abnormality in AD. RESULTS: We quantified regional WM abnormality and identified most vulnerable brain regions. A SNP rs2203712 in CELF1 was most significantly associated with several DTI-derived features in the hippocampus, the top ranked brain region. An immune response gene subnetwork in the blood was most correlated with DTI features across all the brain regions. DISCUSSION: Incorporation of image analysis with gene network analysis enhances our understanding of disease progression and facilitates identification of novel therapeutic strategies for AD

    Learning Counterfactual Representations for Estimating Individual Dose-Response Curves

    Full text link
    Estimating what would be an individual's potential response to varying levels of exposure to a treatment is of high practical relevance for several important fields, such as healthcare, economics and public policy. However, existing methods for learning to estimate counterfactual outcomes from observational data are either focused on estimating average dose-response curves, or limited to settings with only two treatments that do not have an associated dosage parameter. Here, we present a novel machine-learning approach towards learning counterfactual representations for estimating individual dose-response curves for any number of treatments with continuous dosage parameters with neural networks. Building on the established potential outcomes framework, we introduce performance metrics, model selection criteria, model architectures, and open benchmarks for estimating individual dose-response curves. Our experiments show that the methods developed in this work set a new state-of-the-art in estimating individual dose-response

    Artificial Intelligence in Multiphoton Tomography: Atopic Dermatitis Diagnosis

    Get PDF
    The diagnostic possibilities of multiphoton tomography (MPT) in dermatology have already been demonstrated. Nevertheless, the analysis of MPT data is still time-consuming and operator dependent. We propose a fully automatic approach based on convolutional neural networks (CNNs) to fully realize the potential of MPT. In total, 3,663 MPT images combining both morphological and metabolic information were acquired from atopic dermatitis (AD) patients and healthy volunteers. These were used to train and tune CNNs to detect the presence of living cells, and if so, to diagnose AD, independently of imaged layer or position. The proposed algorithm correctly diagnosed AD in 97.0 ± 0.2% of all images presenting living cells. The diagnosis was obtained with a sensitivity of 0.966 ± 0.003, specificity of 0.977 ± 0.003 and F-score of 0.964 ± 0.002. Relevance propagation by deep Taylor decomposition was used to enhance the algorithm’s interpretability. Obtained heatmaps show what aspects of the images are important for a given classification. We showed that MPT imaging can be combined with artificial intelligence to successfully diagnose AD. The proposed approach serves as a framework for the automatic diagnosis of skin disorders using MPT

    Search Process as Transitions Between Neural States

    Get PDF
    Search is one of the most performed activities on the World Wide Web. Various conceptual models postulate that the search process can be broken down into distinct emotional and cognitive states of searchers while they engage in a search process. These models significantly contribute to our understanding of the search process. However, they are typically based on self-report measures, such as surveys, questionnaire, etc. and therefore, only indirectly monitor the brain activity that supports such a process. With this work, we take one step further and directly measure the brain activity involved in a search process. To do so, we break down a search process into five time periods: a realisation of Information Need, Query Formulation, Query Submission, Relevance Judgment and Satisfaction Judgment. We then investigate the brain activity between these time periods. Using functional Magnetic Resonance Imaging (fMRI), we monitored the brain activity of twenty-four participants during a search process that involved answering questions carefully selected from the TREC-8 and TREC 2001 Q/A Tracks. This novel analysis that focuses on transitions rather than states reveals the contrasting brain activity between time periods – which enables the identification of the distinct parts of the search process as the user moves through them. This work, therefore, provides an important first step in representing the search process based on the transitions between neural states. Discovering more precisely how brain activity relates to different parts of the search process will enable the development of brain-computer interactions that better support search and search interactions, which we believe our study and conclusions advance

    Using Spatiotemporal Methods to Fill Gaps In Energy Usage Interval Data

    Full text link
    Researchers analyzing spatiotemporal or panel data, which varies both in location and over time, often find that their data has holes or gaps. This thesis explores alternative methods for filling those gaps and also suggests a set of techniques for evaluating those gap-filling methods to determine which works best

    Enhancing Face Recognition with Deep Learning Architectures: A Comprehensive Review

    Get PDF
    The progression of information discernment via facial identification and the emergence of innovative frameworks has exhibited remarkable strides in recent years. This phenomenon has been particularly pronounced within the realm of verifying individual credentials, a practice prominently harnessed by law enforcement agencies to advance the field of forensic science. A multitude of scholarly endeavors have been dedicated to the application of deep learning techniques within machine learning models. These endeavors aim to facilitate the extraction of distinctive features and subsequent classification, thereby elevating the precision of unique individual recognition. In the context of this scholarly inquiry, the focal point resides in the exploration of deep learning methodologies tailored for the realm of facial recognition and its subsequent matching processes. This exploration centers on the augmentation of accuracy through the meticulous process of training models with expansive datasets. Within the confines of this research paper, a comprehensive survey is conducted, encompassing an array of diverse strategies utilized in facial recognition. This survey, in turn, delves into the intricacies and challenges that underlie the intricate field of facial recognition within imagery analysis
    corecore