2,154 research outputs found

    Host mobility key management in dynamic secure group communication

    Get PDF
    The key management has a fundamental role in securing group communications taking place over vast and unprotected networks. It is concerned with the distribution and update of the keying materials whenever any changes occur in the group membership. Wireless mobile environments enable members to move freely within the networks, which causes more difficulty to design efficient and scalable key management protocols. This is partly because both member location dynamic and group membership dynamic must be managed concurrently, which may lead to significant rekeying overhead. This paper presents a hierarchical group key management scheme taking the mobility of members into consideration intended for wireless mobile environments. The proposed scheme supports the mobility of members across wireless mobile environments while remaining in the group session with minimum rekeying transmission overhead. Furthermore, the proposed scheme alleviates 1-affect-n phenomenon, single point of failure, and signaling load caused by moving members at the core network. Simulation results shows that the scheme surpasses other existing efforts in terms of communication overhead and affected members. The security requirements studies also show the backward and forward secrecy is preserved in the proposed scheme even though the members move between areas

    Linux XIA: an interoperable meta network architecture to crowdsource the future Internet

    Full text link
    With the growing number of proposed clean-slate redesigns of the Internet, the need for a medium that enables all stakeholders to participate in the realization, evaluation, and selection of these designs is increasing. We believe that the missing catalyst is a meta network architecture that welcomes most, if not all, clean-state designs on a level playing field, lowers deployment barriers, and leaves the final evaluation to the broader community. This paper presents Linux XIA, a native implementation of XIA [12] in the Linux kernel, as a candidate. We first describe Linux XIA in terms of its architectural realizations and algorithmic contributions. We then demonstrate how to port several distinct and unrelated network architectures onto Linux XIA. Finally, we provide a hybrid evaluation of Linux XIA at three levels of abstraction in terms of its ability to: evolve and foster interoperation of new architectures, embed disparate architectures inside the implementation’s framework, and maintain a comparable forwarding performance to that of the legacy TCP/IP implementation. Given this evaluation, we substantiate a previously unsupported claim of XIA: that it readily supports and enables network evolution, collaboration, and interoperability—traits we view as central to the success of any future Internet architecture.This research was supported by the National Science Foundation under awards CNS-1040800, CNS-1345307 and CNS-1347525

    SDNsec: Forwarding Accountability for the SDN Data Plane

    Full text link
    SDN promises to make networks more flexible, programmable, and easier to manage. Inherent security problems in SDN today, however, pose a threat to the promised benefits. First, the network operator lacks tools to proactively ensure that policies will be followed or to reactively inspect the behavior of the network. Second, the distributed nature of state updates at the data plane leads to inconsistent network behavior during reconfigurations. Third, the large flow space makes the data plane susceptible to state exhaustion attacks. This paper presents SDNsec, an SDN security extension that provides forwarding accountability for the SDN data plane. Forwarding rules are encoded in the packet, ensuring consistent network behavior during reconfigurations and limiting state exhaustion attacks due to table lookups. Symmetric-key cryptography is used to protect the integrity of the forwarding rules and enforce them at each switch. A complementary path validation mechanism allows the controller to reactively examine the actual path taken by the packets. Furthermore, we present mechanisms for secure link-failure recovery and multicast/broadcast forwarding.Comment: 14 page
    corecore