293 research outputs found

    On the Design and Analysis of Stream Ciphers

    Get PDF
    This thesis presents new cryptanalysis results for several different stream cipher constructions. In addition, it also presents two new stream ciphers, both based on the same design principle. The first attack is a general attack targeting a nonlinear combiner. A new class of weak feedback polynomials for linear feedback shift registers is identified. By taking samples corresponding to the linear recurrence relation, it is shown that if the feedback polynomial has taps close together an adversary to take advantage of this by considering the samples in a vector form. Next, the self-shrinking generator and the bit-search generator are analyzed. Both designs are based on irregular decimation. For the self-shrinking generator, it is shown how to recover the internal state knowing only a few keystream bits. The complexity of the attack is similar to the previously best known but uses a negligible amount of memory. An attack requiring a large keystream segment is also presented. It is shown to be asymptotically better than all previously known attacks. For the bit-search generator, an algorithm that recovers the internal state is given as well as a distinguishing attack that can be very efficient if the feedback polynomial is not carefully chosen. Following this, two recently proposed stream cipher designs, Pomaranch and Achterbahn, are analyzed. Both stream ciphers are designed with small hardware complexity in mind. For Pomaranch Version 2, based on an improvement of previous analysis of the design idea, a key recovery attack is given. Also, for all three versions of Pomaranch, a distinguishing attack is given. For Achterbahn, it is shown how to recover the key of the latest version, known as Achterbahn-128/80. The last part of the thesis introduces two new stream cipher designs, namely Grain and Grain-128. The ciphers are designed to be very small in hardware. They also have the distinguishing feature of allowing users to increase the speed of the ciphers by adding extra hardware

    Multi-shape symmetric encryption mechanism for nongeneric attacks mitigation

    Get PDF
    Static cyphers use static transformations for encryption and decryption. Therefore, the attacker will have some knowledge that can be exploited to construct assaults since the transformations are static. The class of attacks which target a specific cypher design are called Non-Generic Attacks. Whereby, dynamic cyphers can be utilised to mitigate non-generic attacks. Dynamic cyphers aim at mitigating non-generic attacks by changing how the cyphers work according to the value of the encryption key. However, existing dynamic cyphers either degrade the performance or decrease the cypher’s actual security. Hence, this thesis introduces a Multi-Shape Symmetric Encryption Mechanism (MSSEM) which is capable of mitigating non-generic attacks by eliminating the opponents’ leverage of accessing the exact operation details. The base cyphers that have been applied in the proposed MSSEM are the Advanced Encryption Standard (AES) competition finalists, namely Rijndael, Serpent, MARS, Twofish, and RC6. These cyphers satisfy three essential criteria, such as security, performance, and expert input. Moreover, the modes of operation used by the MSSEM are the secure modes suggested by the National Institute of Standards and Technology, namely, Cipher Block Chaining (CBC), Cipher Feedback Mode (CFB), Output Feedback Mode (OFB), and Counter (CTR). For the proposed MSSEM implementation, the sender initially generates a random key using a pseudorandom number generator such as Blum Blum Shub (BBS) or a Linear Congruential Generator (LCG). Subsequently, the sender securely shares the key with the legitimate receiver. Besides that, the proposed MSSEM has an entity called the operation table that includes sixty different cypher suites. Each cypher suite has a specific cypher and mode of operation. During the run-time, one cypher suite is randomly selected from the operation table, and a new key is extracted from the master key with the assistance of SHA-256. The suite, as well as the new key, is allowed to encrypt one message. While each of the messages produces a new key and cypher suite. Thus, no one except communicating parties can access the encryption keys or the cypher suites. Furthermore, the security of MSSEM has been evaluated and mathematically proven to resist known and unknown attacks. As a result, the proposed MSSEM successfully mitigates unknown non-generic attacks by a factor of 2−6. In addition, the proposed MSSEM performance is better than MODEM since MODEM generates 4650 milliseconds to encrypt approximately 1000 bytes, whereas MSSEM needs only 0.14 milliseconds. Finally, a banking system simulation has been tested with the proposed MSSEM in order to secure inbound and outbound system traffic

    Lightweight cryptography on ultra-constrained RFID devices

    Full text link
    Devices of extremely small computational power like RFID tags are used in practice to a rapidly growing extent, a trend commonly referred to as ubiquitous computing. Despite their severely constrained resources, the security burden which these devices have to carry is often enormous, as their fields of application range from everyday access control to human-implantable chips providing sensitive medical information about a person. Unfortunately, established cryptographic primitives such as AES are way to 'heavy' (e.g., in terms of circuit size or power consumption) to be used in corresponding RFID systems, calling for new solutions and thus initiating the research area of lightweight cryptography. In this thesis, we focus on the currently most restricted form of such devices and will refer to them as ultra-constrained RFIDs. To fill this notion with life and in order to create a profound basis for our subsequent cryptographic development, we start this work by providing a comprehensive summary of conditions that should be met by lightweight cryptographic schemes targeting ultra-constrained RFID devices. Building on these insights, we then turn towards the two main topics of this thesis: lightweight authentication and lightweight stream ciphers. To this end, we first provide a general introduction to the broad field of authentication and study existing (allegedly) lightweight approaches. Drawing on this, with the (n,k,L)^-protocol, we suggest our own lightweight authentication scheme and, on the basis of corresponding hardware implementations for FPGAs and ASICs, demonstrate its suitability for ultra-constrained RFIDs. Subsequently, we leave the path of searching for dedicated authentication protocols and turn towards stream cipher design, where we first revisit some prominent classical examples and, in particular, analyze their state initialization algorithms. Following this, we investigate the rather young area of small-state stream ciphers, which try to overcome the limit imposed by time-memory-data tradeoff (TMD-TO) attacks on the security of classical stream ciphers. Here, we present some new attacks, but also corresponding design ideas how to counter these. Paving the way for our own small-state stream cipher, we then propose and analyze the LIZARD-construction, which combines the explicit use of packet mode with a new type of state initialization algorithm. For corresponding keystream generator-based designs of inner state length n, we prove a tight (2n/3)-bound on the security against TMD-TO key recovery attacks. Building on these theoretical results, we finally present LIZARD, our new lightweight stream cipher for ultra-constrained RFIDs. Its hardware efficiency and security result from combining a Grain-like design with the LIZARD-construction. Most notably, besides lower area requirements, the estimated power consumption of LIZARD is also about 16 percent below that of Grain v1, making it particularly suitable for passive RFID tags, which obtain their energy exclusively through an electromagnetic field radiated by the reading device. The thesis is concluded by an extensive 'Future Research Directions' chapter, introducing various new ideas and thus showing that the search for lightweight cryptographic solutions is far from being completed

    Cryptanalysis and Design of Symmetric Primitives

    Get PDF
    Der Schwerpunkt dieser Dissertation liegt in der Analyse und dem Design von Block- chiffren und Hashfunktionen. Die Arbeit beginnt mit einer Einführung in Techniken zur Kryptoanalyse von Blockchiffren. Wir beschreiben diese Methoden und zeigen wie man daraus neue Techniken entwickeln kann, welche zu staerkeren Angriffen fuehren. Im zweiten Teil der Arbeit stellen wir eine Reihe von Angriffen auf eine Vielzahl von Blockchiffren dar. Wir haben dabei Angriffe auf reduzierte Versionen von ARIA und dem AES entwickelt. Darueber hinaus praesentieren wir im dritten Teil Angriffe auf interne Blockchiffren von Hashfunktionen. Wir entwickeln Angriffe, welche die inter- nen Blockchiffren von Tiger und HAS-160 auf volle Rundenanzahl brechen. Die hier vorgestellten Angriffe sind die ersten dieser Art. Ein Angriff auf eine reduzierte Ver- sion von SHACAL-2 welcher fast keinen Speicherbedarf hat, wird ebenfalls vorgestellt. Der vierte Teil der Arbeit befasst sich mit den Design und der Analyse von kryp- tographischen Hashfunktionen. Wir habe einen Slide Angriff, eine Technik welche aus der Analyse von Blockchiffren bekannt ist, im Kontext von Hashfunktionen zur Anwendung gebracht. Dabei praesentieren wir verschiedene Angriffe auf GRINDAHL und RADIOGATUN. Aufbauend auf den Angriffen des zweiten und dritten Teils dieser Arbeit stellen wir eine neue Hashfunktion vor, welche wir TWISTER nennen. TWISTER wurde fuer den SHA-3 Wettbewerb entwickelt und ist bereits zur ersten Runde angenommen.This thesis focuses on the cryptanalysis and the design of block ciphers and hash func- tions. The thesis starts with an overview of methods for cryptanalysis of block ciphers which are based on differential cryptanalysis. We explain these concepts and also sev- eral combinations of these attacks. We propose new attacks on reduced versions of ARIA and AES. Furthermore, we analyze the strength of the internal block ciphers of hash functions. We propose the first attacks that break the internal block ciphers of Tiger, HAS-160, and a reduced round version of SHACAL-2. The last part of the thesis is concerned with the analysis and the design of cryptographic hash functions. We adopt a block cipher attack called slide attack into the scenario of hash function cryptanalysis. We then use this new method to attack different variants of GRINDAHL and RADIOGATUN. Finally, we propose a new hash function called TWISTER which was designed and pro- posed for the SHA-3 competition. TWISTER was accepted for round one of this com- petition. Our approach follows a new strategy to design a cryptographic hash function. We also describe several attacks on TWISTER and discuss the security issues concern- ing these attack on TWISTER

    Analysis and Mitigation of Remote Side-Channel and Fault Attacks on the Electrical Level

    Get PDF
    In der fortlaufenden Miniaturisierung von integrierten Schaltungen werden physikalische Grenzen erreicht, wobei beispielsweise Einzelatomtransistoren eine mögliche untere Grenze für Strukturgrößen darstellen. Zudem ist die Herstellung der neuesten Generationen von Mikrochips heutzutage finanziell nur noch von großen, multinationalen Unternehmen zu stemmen. Aufgrund dieser Entwicklung ist Miniaturisierung nicht länger die treibende Kraft um die Leistung von elektronischen Komponenten weiter zu erhöhen. Stattdessen werden klassische Computerarchitekturen mit generischen Prozessoren weiterentwickelt zu heterogenen Systemen mit hoher Parallelität und speziellen Beschleunigern. Allerdings wird in diesen heterogenen Systemen auch der Schutz von privaten Daten gegen Angreifer zunehmend schwieriger. Neue Arten von Hardware-Komponenten, neue Arten von Anwendungen und eine allgemein erhöhte Komplexität sind einige der Faktoren, die die Sicherheit in solchen Systemen zur Herausforderung machen. Kryptografische Algorithmen sind oftmals nur unter bestimmten Annahmen über den Angreifer wirklich sicher. Es wird zum Beispiel oft angenommen, dass der Angreifer nur auf Eingaben und Ausgaben eines Moduls zugreifen kann, während interne Signale und Zwischenwerte verborgen sind. In echten Implementierungen zeigen jedoch Angriffe über Seitenkanäle und Faults die Grenzen dieses sogenannten Black-Box-Modells auf. Während bei Seitenkanalangriffen der Angreifer datenabhängige Messgrößen wie Stromverbrauch oder elektromagnetische Strahlung ausnutzt, wird bei Fault Angriffen aktiv in die Berechnungen eingegriffen, und die falschen Ausgabewerte zum Finden der geheimen Daten verwendet. Diese Art von Angriffen auf Implementierungen wurde ursprünglich nur im Kontext eines lokalen Angreifers mit Zugriff auf das Zielgerät behandelt. Jedoch haben bereits Angriffe, die auf der Messung der Zeit für bestimmte Speicherzugriffe basieren, gezeigt, dass die Bedrohung auch durch Angreifer mit Fernzugriff besteht. In dieser Arbeit wird die Bedrohung durch Seitenkanal- und Fault-Angriffe über Fernzugriff behandelt, welche eng mit der Entwicklung zu mehr heterogenen Systemen verknüpft sind. Ein Beispiel für neuartige Hardware im heterogenen Rechnen sind Field-Programmable Gate Arrays (FPGAs), mit welchen sich fast beliebige Schaltungen in programmierbarer Logik realisieren lassen. Diese Logik-Chips werden bereits jetzt als Beschleuniger sowohl in der Cloud als auch in Endgeräten eingesetzt. Allerdings wurde gezeigt, wie die Flexibilität dieser Beschleuniger zur Implementierung von Sensoren zur Abschätzung der Versorgungsspannung ausgenutzt werden kann. Zudem können durch eine spezielle Art der Aktivierung von großen Mengen an Logik Berechnungen in anderen Schaltungen für Fault Angriffe gestört werden. Diese Bedrohung wird hier beispielsweise durch die Erweiterung bestehender Angriffe weiter analysiert und es werden Strategien zur Absicherung dagegen entwickelt

    Design and Analysis of Cryptographic Algorithms for Authentication

    Get PDF
    During the previous decades, the upcoming demand for security in the digital world, e.g., the Internet, lead to numerous groundbreaking research topics in the field of cryptography. This thesis focuses on the design and analysis of cryptographic primitives and schemes to be used for authentication of data and communication endpoints, i.e., users. It is structured into three parts, where we present the first freely scalable multi-block-length block-cipher-based compression function (Counter-bDM) in the first part. The presented design is accompanied by a thorough security analysis regarding its preimage and collision security. The second and major part is devoted to password hashing. It is motivated by the large amount of leaked password during the last years and our discovery of side-channel attacks on scrypt – the first modern password scrambler that allowed to parameterize the amount of memory required to compute a password hash. After summarizing which properties we expect from a modern password scrambler, we (1) describe a cache-timing attack on scrypt based on its password-dependent memory-access pattern and (2) outline an additional attack vector – garbage-collector attacks – that exploits optimization which may disregard to overwrite the internally used memory. Based on our observations, we introduce Catena – the first memory-demanding password-scrambling framework that allows a password-independent memory-access pattern for resistance to the aforementioned attacks. Catena was submitted to the Password Hashing Competition (PHC) and, after two years of rigorous analysis, ended up as a finalist gaining special recognition for its agile framework approach and side-channel resistance. We provide six instances of Catena suitable for a variety of applications. We close the second part of this thesis with an overview of modern password scramblers regarding their functional, security, and general properties; supported by a brief analysis of their resistance to garbage-collector attacks. The third part of this thesis is dedicated to the integrity (authenticity of data) of nonce-based authenticated encryption schemes (NAE). We introduce the so-called j-IV-Collision Attack, allowing to obtain an upper bound for an adversary that is provided with a first successful forgery and tries to efficiently compute j additional forgeries for a particular NAE scheme (in short: reforgeability). Additionally, we introduce the corresponding security notion j-INT-CTXT and provide a comparative analysis (regarding j-INT-CTXT security) of the third-round submission to the CAESAR competition and the four classical and widely used NAE schemes CWC, CCM, EAX, and GCM.Die fortschreitende Digitalisierung in den letzten Jahrzehnten hat dazu geführt, dass sich das Forschungsfeld der Kryptographie bedeutsam weiterentwickelt hat. Diese, im Wesentlichen aus drei Teilen bestehende Dissertation, widmet sich dem Design und der Analyse von kryptographischen Primitiven und Modi zur Authentifizierung von Daten und Kommunikationspartnern. Der erste Teil beschäftigt sich dabei mit blockchiffrenbasierten Kompressionsfunktionen, die in ressourcenbeschränkten Anwendungsbereichen eine wichtige Rolle spielen. Im Rahmen dieser Arbeit präsentieren wir die erste frei skalierbare und sichere blockchiffrenbasierte Kompressionsfunktion Counter-bDM und erweitern somit flexibel die erreichbare Sicherheit solcher Konstruktionen. Der zweite Teil und wichtigste Teil dieser Dissertation widmet sich Passwort-Hashing-Verfahren. Zum einen ist dieser motiviert durch die große Anzahl von Angriffen auf Passwortdatenbanken großer Internet-Unternehmen. Zum anderen bot die Password Hashing Competition (PHC) die Möglichkeit, unter Aufmerksamkeit der Expertengemeinschaft die Sicherheit bestehender Verfahren zu hinterfragen, sowie neue sichere Verfahren zu entwerfen. Im Rahmen des zweiten Teils entwarfen wir Anforderungen an moderne Passwort-Hashing-Verfahren und beschreiben drei Arten von Seitenkanal-Angriffen (Cache-Timing-, Weak Garbage-Collector- und Garbage-Collector-Angriffe) auf scrypt – das erste moderne Password-Hashing-Verfahren welches erlaubte, den benötigten Speicheraufwand zur Berechnung eines Passworthashes frei zu wählen. Basierend auf unseren Beobachtungen und Angriffen, stellen wir das erste moderne PasswordHashing-Framework Catena vor, welches für gewählte Instanzen passwortunabhängige Speicherzugriffe und somit Sicherheit gegen oben genannte Angriffe garantiert. Catena erlangte im Rahmen des PHC-Wettbewerbs besondere Anerkennung für seine Agilität und Resistenz gegen SeitenkanalAngriffe. Wir präsentieren sechs Instanzen des Frameworks, welche für eine Vielzahl von Anwendungen geeignet sind. Abgerundet wird der zweite Teil dieser Arbeit mit einem vergleichenden Überblick von modernen Passwort-Hashing-Verfahren hinsichtlich ihrer funktionalen, sicherheitstechnischen und allgemeinen Eigenschaften. Dieser Vergleich wird unterstützt durch eine kurze Analyse bezüglich ihrer Resistenz gegen (Weak) Garbage-Collector-Angriffe. Der dritte teil dieser Arbeit widmet sich der Integrität von Daten, genauer, der Sicherheit sogenannter Nonce-basierten authentisierten Verschlüsselungsverfahren (NAE-Verfahren), welche ebenso wie Passwort-Hashing-Verfahren in der heutigen Sicherheitsinfrastruktur des Internets eine wichtige Rolle spielen. Während Standard-Definitionen keine Sicherheit nach dem Fund einer ersten erfolgreich gefälschten Nachricht betrachten, erweitern wir die Sicherheitsanforderungen dahingehend wie schwer es ist, weitere Fälschungen zu ermitteln. Wir abstrahieren die Funktionsweise von NAEVerfahren in Klassen, analysieren diese systematisch und klassifizieren die Dritt-Runden-Kandidaten des CAESAR-Wettbewerbs, sowie vier weit verbreitete NAE-Verfahren CWC, CCM, EAX und GCM

    Design and Analysis of Cryptographic Algorithms for Authentication

    Get PDF
    During the previous decades, the upcoming demand for security in the digital world, e.g., the Internet, lead to numerous groundbreaking research topics in the field of cryptography. This thesis focuses on the design and analysis of cryptographic primitives and schemes to be used for authentication of data and communication endpoints, i.e., users. It is structured into three parts, where we present the first freely scalable multi-block-length block-cipher-based compression function (Counter-bDM) in the first part. The presented design is accompanied by a thorough security analysis regarding its preimage and collision security. The second and major part is devoted to password hashing. It is motivated by the large amount of leaked password during the last years and our discovery of side-channel attacks on scrypt – the first modern password scrambler that allowed to parameterize the amount of memory required to compute a password hash. After summarizing which properties we expect from a modern password scrambler, we (1) describe a cache-timing attack on scrypt based on its password-dependent memory-access pattern and (2) outline an additional attack vector – garbage-collector attacks – that exploits optimization which may disregard to overwrite the internally used memory. Based on our observations, we introduce Catena – the first memory-demanding password-scrambling framework that allows a password-independent memory-access pattern for resistance to the aforementioned attacks. Catena was submitted to the Password Hashing Competition (PHC) and, after two years of rigorous analysis, ended up as a finalist gaining special recognition for its agile framework approach and side-channel resistance. We provide six instances of Catena suitable for a variety of applications. We close the second part of this thesis with an overview of modern password scramblers regarding their functional, security, and general properties; supported by a brief analysis of their resistance to garbage-collector attacks. The third part of this thesis is dedicated to the integrity (authenticity of data) of nonce-based authenticated encryption schemes (NAE). We introduce the so-called j-IV-Collision Attack, allowing to obtain an upper bound for an adversary that is provided with a first successful forgery and tries to efficiently compute j additional forgeries for a particular NAE scheme (in short: reforgeability). Additionally, we introduce the corresponding security notion j-INT-CTXT and provide a comparative analysis (regarding j-INT-CTXT security) of the third-round submission to the CAESAR competition and the four classical and widely used NAE schemes CWC, CCM, EAX, and GCM.Die fortschreitende Digitalisierung in den letzten Jahrzehnten hat dazu geführt, dass sich das Forschungsfeld der Kryptographie bedeutsam weiterentwickelt hat. Diese, im Wesentlichen aus drei Teilen bestehende Dissertation, widmet sich dem Design und der Analyse von kryptographischen Primitiven und Modi zur Authentifizierung von Daten und Kommunikationspartnern. Der erste Teil beschäftigt sich dabei mit blockchiffrenbasierten Kompressionsfunktionen, die in ressourcenbeschränkten Anwendungsbereichen eine wichtige Rolle spielen. Im Rahmen dieser Arbeit präsentieren wir die erste frei skalierbare und sichere blockchiffrenbasierte Kompressionsfunktion Counter-bDM und erweitern somit flexibel die erreichbare Sicherheit solcher Konstruktionen. Der zweite Teil und wichtigste Teil dieser Dissertation widmet sich Passwort-Hashing-Verfahren. Zum einen ist dieser motiviert durch die große Anzahl von Angriffen auf Passwortdatenbanken großer Internet-Unternehmen. Zum anderen bot die Password Hashing Competition (PHC) die Möglichkeit, unter Aufmerksamkeit der Expertengemeinschaft die Sicherheit bestehender Verfahren zu hinterfragen, sowie neue sichere Verfahren zu entwerfen. Im Rahmen des zweiten Teils entwarfen wir Anforderungen an moderne Passwort-Hashing-Verfahren und beschreiben drei Arten von Seitenkanal-Angriffen (Cache-Timing-, Weak Garbage-Collector- und Garbage-Collector-Angriffe) auf scrypt – das erste moderne Password-Hashing-Verfahren welches erlaubte, den benötigten Speicheraufwand zur Berechnung eines Passworthashes frei zu wählen. Basierend auf unseren Beobachtungen und Angriffen, stellen wir das erste moderne PasswordHashing-Framework Catena vor, welches für gewählte Instanzen passwortunabhängige Speicherzugriffe und somit Sicherheit gegen oben genannte Angriffe garantiert. Catena erlangte im Rahmen des PHC-Wettbewerbs besondere Anerkennung für seine Agilität und Resistenz gegen SeitenkanalAngriffe. Wir präsentieren sechs Instanzen des Frameworks, welche für eine Vielzahl von Anwendungen geeignet sind. Abgerundet wird der zweite Teil dieser Arbeit mit einem vergleichenden Überblick von modernen Passwort-Hashing-Verfahren hinsichtlich ihrer funktionalen, sicherheitstechnischen und allgemeinen Eigenschaften. Dieser Vergleich wird unterstützt durch eine kurze Analyse bezüglich ihrer Resistenz gegen (Weak) Garbage-Collector-Angriffe. Der dritte teil dieser Arbeit widmet sich der Integrität von Daten, genauer, der Sicherheit sogenannter Nonce-basierten authentisierten Verschlüsselungsverfahren (NAE-Verfahren), welche ebenso wie Passwort-Hashing-Verfahren in der heutigen Sicherheitsinfrastruktur des Internets eine wichtige Rolle spielen. Während Standard-Definitionen keine Sicherheit nach dem Fund einer ersten erfolgreich gefälschten Nachricht betrachten, erweitern wir die Sicherheitsanforderungen dahingehend wie schwer es ist, weitere Fälschungen zu ermitteln. Wir abstrahieren die Funktionsweise von NAEVerfahren in Klassen, analysieren diese systematisch und klassifizieren die Dritt-Runden-Kandidaten des CAESAR-Wettbewerbs, sowie vier weit verbreitete NAE-Verfahren CWC, CCM, EAX und GCM

    Physical Fault Injection and Side-Channel Attacks on Mobile Devices:A Comprehensive Analysis

    Get PDF
    Today's mobile devices contain densely packaged system-on-chips (SoCs) with multi-core, high-frequency CPUs and complex pipelines. In parallel, sophisticated SoC-assisted security mechanisms have become commonplace for protecting device data, such as trusted execution environments, full-disk and file-based encryption. Both advancements have dramatically complicated the use of conventional physical attacks, requiring the development of specialised attacks. In this survey, we consolidate recent developments in physical fault injections and side-channel attacks on modern mobile devices. In total, we comprehensively survey over 50 fault injection and side-channel attack papers published between 2009-2021. We evaluate the prevailing methods, compare existing attacks using a common set of criteria, identify several challenges and shortcomings, and suggest future directions of research
    corecore