11 research outputs found

    Designing Enhanced Multi-dimensional Constellations for Code-Domain NOMA

    Get PDF
    This paper presents an enhanced design of multi-dimensional (MD) constellations which play a pivotal role in many communication systems such as code-domain non-orthogonal multiple access (CD-NOMA). MD constellations are attractive as their structural properties, if properly designed, lead to signal space diversity and hence improved error rate performance. Unlike the existing works which mostly focus on MD constellations with large minimum Euclidean distance (MED), we look for new MD constellations with additional feature that the minimum product distance (MPD) is also large. To this end, a non-convex optimization problem is formulated and then solved by the convex-concave procedure (CCCP). Compared with the state-of-the-art literature, our proposed MD constellations lead to significant error performance enhancement over Rayleigh fading channels whilst maintaining almost the same performance over the Gaussian channels. To demonstrate their application, we also show that these MD constellations give rise to good codebooks in sparse code multiple access systems. All the obtained MD constellations can be found in https://github.com/Aureliano1/Multi-dimensional-constellation

    A Tutorial on Decoding Techniques of Sparse Code Multiple Access

    Get PDF
    Sparse Code Multiple Access (SCMA) is a disruptive code-domain non-orthogonal multiple access (NOMA) scheme to enable future massive machine-type communication networks. As an evolved variant of code division multiple access (CDMA), multiple users in SCMA are separated by assigning distinctive sparse codebooks (CBs). Efficient multiuser detection is carried out at the receiver by employing the message passing algorithm (MPA) that exploits the sparsity of CBs to achieve error performance approaching to that of the maximum likelihood receiver. In spite of numerous research efforts in recent years, a comprehensive one-stop tutorial of SCMA covering the background, the basic principles, and new advances, is still missing, to the best of our knowledge. To fill this gap and to stimulate more forthcoming research, we provide a holistic introduction to the principles of SCMA encoding, CB design, and MPA based decoding in a self-contained manner. As an ambitious paper aiming to push the limits of SCMA, we present a survey of advanced decoding techniques with brief algorithmic descriptions as well as several promising directions

    Low-Complexity Codebook Design for SCMA-Based Visible Light Communication

    Get PDF
    Sparse code multiple access (SCMA), as a code-domain non-orthogonal multiple access (NOMA) scheme, has received considerable research attention for enabling massive connectivity in future wireless communication systems. In this paper, we present a novel codebook (CB) design for SCMA based visible light communication (VLC) system, which suffers from shot noise. In particular, we introduce an iterative algorithm for designing and optimizing CB by considering the impact of shot noise at the VLC receiver. Based on the proposed CB, we derive and analyze the theoretical bit error rate (BER) expression for the resultant SCMA-VLC system. The simulation results show that our proposed CBs outperform CBs in the existing literature for different loading factors with much less complexity. Further, the derived analytical BER expression well aligns with simulated results, especially in high signal power regions

    Potentzia domeinuko NOMA 5G sareetarako eta haratago

    Get PDF
    Tesis inglés 268 p. -- Tesis euskera 274 p.During the last decade, the amount of data carried over wireless networks has grown exponentially. Several reasons have led to this situation, but the most influential ones are the massive deployment of devices connected to the network and the constant evolution in the services offered. In this context, 5G targets the correct implementation of every application integrated into the use cases. Nevertheless, the biggest challenge to make ITU-R defined cases (eMBB, URLLC and mMTC) a reality is the improvement in spectral efficiency. Therefore, in this thesis, a combination of two mechanisms is proposed to improve spectral efficiency: Non-Orthogonal Multiple Access (NOMA) techniques and Radio Resource Management (RRM) schemes. Specifically, NOMA transmits simultaneously several layered data flows so that the whole bandwidth is used throughout the entire time to deliver more than one service simultaneously. Then, RRM schemes provide efficient management and distribution of radio resources among network users. Although NOMA techniques and RRM schemes can be very advantageous in all use cases, this thesis focuses on making contributions in eMBB and URLLC environments and proposing solutions to communications that are expected to be relevant in 6G

    6G wireless communications networks: a comprehensive survey

    Get PDF
    The commercial fifth-generation (5G) wireless communications networks have already been deployed with the aim of providing high data rates. However, the rapid growth in the number of smart devices and the emergence of the Internet of Everything (IoE) applications, which require an ultra-reliable and low-latency communication, will result in a substantial burden on the 5G wireless networks. As such, the data rate that could be supplied by 5G networks will unlikely sustain the enormous ongoing data traffic explosion. This has motivated research into continuing to advance the existing wireless networks toward the future generation of cellular systems, known as sixth generation (6G). Therefore, it is essential to provide a prospective vision of the 6G and the key enabling technologies for realizing future networks. To this end, this paper presents a comprehensive review/survey of the future evolution of 6G networks. Specifically, the objective of the paper is to provide a comprehensive review/survey about the key enabling technologies for 6G networks, which include a discussion about the main operation principles of each technology, envisioned potential applications, current state-of-the-art research, and the related technical challenges. Overall, this paper provides useful information for industries and academic researchers and discusses the potentials for opening up new research directions
    corecore