1,536 research outputs found

    Key Insulation and Intrusion Resilience Over a Public Channel

    Get PDF
    Key insulation (KI) and Intrusion resilience (IR) are methods to protect a user\u27s key against exposure by utilizing periodic communications with an auxiliary helper. But existing work assumes a secure channel between user and helper. If we want to realize KI or IR in practice we must realize this secure channel. This paper looks at the question of how to do this when the communication is over what we are more likely to have in practice, namely a public channel such as the Internet or a wireless network. We explain why this problem is not trivial, introduce models and definitions that capture the desired security in a public channel setting, and provide a complete (and surprising) answer to the question of when KI and IR are possible over a public channel. The information we provide is important to guide practitioners with regard to the usage of KI and IR and also to guide future research in this area

    The paradigm of partial erasures

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 137-145).This thesis is a study of erasures in cryptographic protocols. Erasing old data and keys is an important capability of honest parties in cryptographic protocols. It is useful in many settings, including proactive security in the presence of a mobile adversary, adaptive security in the presence of an adaptive adversary, forward security, and intrusion resilience. Some of these settings, such as achieving proactive security, is provably impossible without some form of erasures. Other settings, such as designing protocols that are secure against adaptive adversaries, are much simpler to achieve when erasures are allowed. Protocols for all these contexts typically assume the ability to perfectly erase information. Unfortunately, as amply demonstrated in the systems literature, perfect erasures are hard to implement in practice. We propose a model of imperfect or partial erasures where erasure instructions are only partially effective and leave almost all the data intact, thus giving the honest parties only a limited capability to dispose old data. Nonetheless, we show how to design protocols for all of the above settings (including proactive security, adaptive security, forward security, and intrusion resilience) for which this weak form of erasures suffices. We do not have to invent entirely new protocols, but rather show how to automatically modify protocols relying on perfect erasures into ones for which partial erasures suffices. Stated most generally, we provide a compiler that transforms any protocol relying on perfect erasures for security into one with the same functionality that remains secure even if the erasures are only partial. The key idea is a new redundant representation of secret data which can still be computed on, and yet is rendered useless when partially erased. We prove that any such compiler must incur a cost in additional storage, and that our compiler is near optimal in terms of its storage overhead. We also give computationally more efficient compilers for a number of special cases: (1) when all the computations on secrets can be done in constant parallel time (NC⁰); (2) for a class of proactive secret sharing protocols where we leave the protocol intact except for changing the representation of the shares of the secret and the instructions that modify the shares (to correspondingly modify the new representation instead).by Dah-Yoh Lim.Ph.D

    Proceedings of the ANDROID Doctoral School

    Get PDF
    The Doctoral School initiative which was set up by the ANDROID network is a core element of the overall project that aims to strengthen the link between research and teaching in the area of disaster resilience. The mixed teaching space that we have developed as part of this ongoing project has attempted to encourage and promote the work of doctoral students in this field. The ANDROID disaster resilience network doctoral school consists of two programmes: 1. Online Doctoral School (ODS) and 2. Residential Doctoral School (RDS) The interlinked programmes work together to deliver on a varied number of teaching and research driven objectives. The online doctoral school which was conducted in Spring 2013 provided an innovative platform to transfer and develop the knowledge base of doctoral candidates. This was achieved through the conduct of a series of domain expert presentations along with thematic sessions aimed at engaging the doctoral researchers in knowledge discovery through detailed discussion. The online doctoral school will be rolled out again in Spring 2014

    A Microfabricated Segmented-Involute-Foil Regenerator for Enhancing Reliability and Performance of Stirling Engines: Phase III Final Report for the Radioisotope Power Conversion Technology NRA Contract NAS3-03124

    Get PDF
    Under Phase III of NASA Research Announcement contract NAS3-03124, a prototype nickel segmented-involute-foil regenerator was microfabricated and tested in a Sunpower Frequency-Test-Bed (FTB) Stirling convertor. The team for this effort consisted of Cleveland State University, Gedeon Associates, Sunpower Inc. and International Mezzo Technologies. Testing in the FTB convertor produced about the same efficiency as testing with the original random-fiber regenerator. But the high thermal conductivity of the prototype nickel regenerator was responsible for a significant performance degradation. An efficiency improvement (by a 1.04 factor, according to computer predictions) could have been achieved if the regenerator was made from a low-conductivity material. Also, the FTB convertor was not reoptimized to take full advantage of the microfabricated regenerator’s low flow resistance; thus, the efficiency would likely have been even higher had the FTB been completely reoptimized. This report discusses the regenerator microfabrication process, testing of the regenerator in the Stirling FTB convertor, and the supporting analysis. Results of the pre-test computational fluid dynamics (CFD) modeling of the effects of the regenerator-test-configuration diffusers (located at each end of the regenerator) are included. The report also includes recommendations for further development of involute-foil regenerators from a higher-temperature material than nickel

    A Microfabricated Segmented-Involute-Foil Regenerator for Enhancing Reliability and Performance of Stirling Engines: Phase III Final Report for the Radioisotope Power Conversion Technology NRA Contract NAS3-03124

    Get PDF
    Under Phase III of NASA Research Announcement contract NAS3-03124, a prototype nickel segmented-involute-foil regenerator was microfabricated and tested in a Sunpower Frequency-Test-Bed (FTB) Stirling convertor. The team for this effort consisted of Cleveland State University, Gedeon Associates, Sunpower Inc. and International Mezzo Technologies. Testing in the FTB convertor produced about the same efficiency as testing with the original random-fiber regenerator. But the high thermal conductivity of the prototype nickel regenerator was responsible for a significant performance degradation. An efficiency improvement (by a 1.04 factor, according to computer predictions) could have been achieved if the regenerator was made from a low-conductivity material. Also, the FTB convertor was not reoptimized to take full advantage of the microfabricated regenerator’s low flow resistance; thus, the efficiency would likely have been even higher had the FTB been completely reoptimized. This report discusses the regenerator microfabrication process, testing of the regenerator in the Stirling FTB convertor, and the supporting analysis. Results of the pre-test computational fluid dynamics (CFD) modeling of the effects of the regenerator-test-configuration diffusers (located at each end of the regenerator) are included. The report also includes recommendations for further development of involute-foil regenerators from a higher-temperature material than nickel

    Understanding the Theory and Use of Resistive Welding Technology for Fiber-Reinforced Thermoplastic Composite Structures in Automotive Applications

    Get PDF
    Transportation accounts for 14% of global greenhouse gas emissions. With a projected rise in GDP for more than half of the global population, the demand for transportation is only going to increase sharply. It is essential to reduce the overall weight of the automobile and ensure that its constituent materials are being reused with the minimal energy consumption during treatment and conversion. This is especially critical for the heaviest components in an automobile – its structure and closures. In this regard, carbon fiber reinforced composites have high light-weighting potential for automotive structures. However, most OEMs use thermoset polymers as matrix material, which are not recyclable. This has led to a great push towards the use of thermoplastics as matrix material in the future. A key issue associated with this possibility is the need for an optimal joining mechanism – since while structural adhesives are the most common joining mechanism used at present, most of these adhesives are thermoset polymers themselves that are also expensive and have longer curing time. Additionally, when used with thermoplastic matrix materials, these adhesives bring forth the problem of compatibility. The ability to be joined in fast, strong and repeatable methods is crucial for automotive structures, given that a typical body structure has between 150-400 individual parts, and their timely and strong joining is essential to ensure their applicability for mass production. In this context, the ability to be fusion bonded (or welded) is one of the key advantages of FRTPCs over thermoset composites. Welding thermoplastic reinforced composites can be segregated into three major categories: resistive implant welding (RIW), vibration welding, and electromagnetic welding. Resistive implant welding is an attractive technology due to faster cycle times, lower cost, higher design freedom, and ease of automation. Most research till date primarily focuses on processing and optimizing RIW joints for FRTPCs with high-performance polymer matrix materials that are typically used in aerospace. This dissertation primarily focuses on understanding the processability and optimizing RIW joint for FRTPC materials with engineering-grade polymers. Moreover, research to date also predominantly uses only lap shear strength to characterize these joints. However, this is not enough to adequately understand the mechanical behavior of welded joints. In this dissertation, both lap shear and peel strength were experimentally evaluated, and finite element models were created to simulate these joints under large non-linear loads such as crash tests. This exercise provided in-depth insights into effects on the component-level performance of resistive implant welded structures and their behaviors in large deformation load cases such as crash tests

    Smart Meter Data and Public Interest Issues– The National Perspective

    Get PDF
    It is expected that smart meters will be installed in approximately 27 million domestic properties and 2 million small business premises by end 2020. The data from these smart electricity and gas meters can help modernise the energy industry, facilitate the evolution of a smart grid in the UK and aid the development of new and innovative energy services for commercial organizations. However there are also public interest uses of smart meter data that could bring significant benefit to many stakeholder groups across the UK. This paper will examine some of the strengths and key limitations of existing energy datasets and highlight the benefits derived from smart meter data. Public interest uses of smart meter data in areas such as policy, academic research, the energy industry and benefits direct to the consumer will be discussed. The arrangements for accessing smart meter data are documented and potential barriers deriving from these arrangements are discussed. Finally recommendations that seek to address these barriers in areas such as policy and governance, data privacy and informed consent and data resources are provided. The need for a strong, co-ordinated voice for public interest perspectives amongst existing industry actors is highlighted
    • 

    corecore