562 research outputs found

    Nondeterministic graph property testing

    Full text link
    A property of finite graphs is called nondeterministically testable if it has a "certificate" such that once the certificate is specified, its correctness can be verified by random local testing. In this paper we study certificates that consist of one or more unary and/or binary relations on the nodes, in the case of dense graphs. Using the theory of graph limits, we prove that nondeterministically testable properties are also deterministically testable.Comment: Version 2: 11 pages; we allow orientation in the certificate, describe new application

    Linear kernels for outbranching problems in sparse digraphs

    Full text link
    In the kk-Leaf Out-Branching and kk-Internal Out-Branching problems we are given a directed graph DD with a designated root rr and a nonnegative integer kk. The question is to determine the existence of an outbranching rooted at rr that has at least kk leaves, or at least kk internal vertices, respectively. Both these problems were intensively studied from the points of view of parameterized complexity and kernelization, and in particular for both of them kernels with O(k2)O(k^2) vertices are known on general graphs. In this work we show that kk-Leaf Out-Branching admits a kernel with O(k)O(k) vertices on H\mathcal{H}-minor-free graphs, for any fixed family of graphs H\mathcal{H}, whereas kk-Internal Out-Branching admits a kernel with O(k)O(k) vertices on any graph class of bounded expansion.Comment: Extended abstract accepted for IPEC'15, 27 page

    On the Kernel and Related Problems in Interval Digraphs

    Get PDF
    Given a digraph GG, a set X⊆V(G)X\subseteq V(G) is said to be absorbing set (resp. dominating set) if every vertex in the graph is either in XX or is an in-neighbour (resp. out-neighbour) of a vertex in XX. A set S⊆V(G)S\subseteq V(G) is said to be an independent set if no two vertices in SS are adjacent in GG. A kernel (resp. solution) of GG is an independent and absorbing (resp. dominating) set in GG. We explore the algorithmic complexity of these problems in the well known class of interval digraphs. A digraph GG is an interval digraph if a pair of intervals (Su,Tu)(S_u,T_u) can be assigned to each vertex uu of GG such that (u,v)∈E(G)(u,v)\in E(G) if and only if Su∩Tv≠∅S_u\cap T_v\neq\emptyset. Many different subclasses of interval digraphs have been defined and studied in the literature by restricting the kinds of pairs of intervals that can be assigned to the vertices. We observe that several of these classes, like interval catch digraphs, interval nest digraphs, adjusted interval digraphs and chronological interval digraphs, are subclasses of the more general class of reflexive interval digraphs -- which arise when we require that the two intervals assigned to a vertex have to intersect. We show that all the problems mentioned above are efficiently solvable, in most of the cases even linear-time solvable, in the class of reflexive interval digraphs, but are APX-hard on even the very restricted class of interval digraphs called point-point digraphs, where the two intervals assigned to each vertex are required to be degenerate, i.e. they consist of a single point each. The results we obtain improve and generalize several existing algorithms and structural results for subclasses of reflexive interval digraphs.Comment: 26 pages, 3 figure
    • 

    corecore