13 research outputs found

    Orientation covariant aggregation of local descriptors with embeddings

    Get PDF
    Image search systems based on local descriptors typically achieve orientation invariance by aligning the patches on their dominant orientations. Albeit successful, this choice introduces too much invariance because it does not guarantee that the patches are rotated consistently. This paper introduces an aggregation strategy of local descriptors that achieves this covariance property by jointly encoding the angle in the aggregation stage in a continuous manner. It is combined with an efficient monomial embedding to provide a codebook-free method to aggregate local descriptors into a single vector representation. Our strategy is also compatible and employed with several popular encoding methods, in particular bag-of-words, VLAD and the Fisher vector. Our geometric-aware aggregation strategy is effective for image search, as shown by experiments performed on standard benchmarks for image and particular object retrieval, namely Holidays and Oxford buildings.Comment: European Conference on Computer Vision (2014

    Sparse Coding with Structured Sparsity Priors and Multilayer Architecture for Image Classification

    Get PDF
    Applying sparse coding on large dataset for image classification is a long standing problem in the field of computer vision. It has been found that the sparse coding models exhibit disappointing performance on these large datasets where variability is broad and anomalies are common. Conversely, deep neural networks thrive on bountiful data. Their success has encouraged researchers to try and augment the learning capacity of traditionally shallow sparse coding methods by adding layers. Multilayer sparse coding networks are expected to combine the best of both sparsity regularizations and deep architectures. To date, however, endeavors to marry the two techniques have not achieved significant improvements over their individual counterparts. In this thesis, we first briefly review multiple structured sparsity priors as well as various supervised dictionary learning techniques with applications on hyperspectral image classification. Based on the structured sparsity priors and dictionary learning techniques, we then develop a novel multilayer sparse coding network that contains thirteen sparse coding layers. The proposed sparse coding network learns both the dictionaries and the regularization parameters simultaneously using an end-to-end supervised learning scheme. We show empirical evidence that the regularization parameters can adapt to the given training data. We also propose applying dimension reduction within sparse coding networks to dramatically reduce the output dimensionality of the sparse coding layers and mitigate computational costs. Moreover, our sparse coding network is compatible with other powerful deep learning techniques such as drop out, batch normalization and shortcut connections. Experimental results show that the proposed multilayer sparse coding network produces classification accuracy competitive with the deep neural networks while using significantly fewer parameters and layers
    corecore