489 research outputs found

    Compact Bilinear Pooling

    Full text link
    Bilinear models has been shown to achieve impressive performance on a wide range of visual tasks, such as semantic segmentation, fine grained recognition and face recognition. However, bilinear features are high dimensional, typically on the order of hundreds of thousands to a few million, which makes them impractical for subsequent analysis. We propose two compact bilinear representations with the same discriminative power as the full bilinear representation but with only a few thousand dimensions. Our compact representations allow back-propagation of classification errors enabling an end-to-end optimization of the visual recognition system. The compact bilinear representations are derived through a novel kernelized analysis of bilinear pooling which provide insights into the discriminative power of bilinear pooling, and a platform for further research in compact pooling methods. Experimentation illustrate the utility of the proposed representations for image classification and few-shot learning across several datasets.Comment: Camera ready version for CVP

    A weighted subspace exponential kernel for support tensor machines

    Full text link
    High-dimensional data in the form of tensors are challenging for kernel classification methods. To both reduce the computational complexity and extract informative features, kernels based on low-rank tensor decompositions have been proposed. However, what decisive features of the tensors are exploited by these kernels is often unclear. In this paper we propose a novel kernel that is based on the Tucker decomposition. For this kernel the Tucker factors are computed based on re-weighting of the Tucker matrices with tuneable powers of singular values from the HOSVD decomposition. This provides a mechanism to balance the contribution of the Tucker core and factors of the data. We benchmark support tensor machines with this new kernel on several datasets. First we generate synthetic data where two classes differ in either Tucker factors or core, and compare our novel and previously existing kernels. We show robustness of the new kernel with respect to both classification scenarios. We further test the new method on real-world datasets. The proposed kernel has demonstrated a higher test accuracy than the state-of-the-art tensor train multi-way multi-level kernel, and a significantly lower computational time

    When Kernel Methods meet Feature Learning: Log-Covariance Network for Action Recognition from Skeletal Data

    Full text link
    Human action recognition from skeletal data is a hot research topic and important in many open domain applications of computer vision, thanks to recently introduced 3D sensors. In the literature, naive methods simply transfer off-the-shelf techniques from video to the skeletal representation. However, the current state-of-the-art is contended between to different paradigms: kernel-based methods and feature learning with (recurrent) neural networks. Both approaches show strong performances, yet they exhibit heavy, but complementary, drawbacks. Motivated by this fact, our work aims at combining together the best of the two paradigms, by proposing an approach where a shallow network is fed with a covariance representation. Our intuition is that, as long as the dynamics is effectively modeled, there is no need for the classification network to be deep nor recurrent in order to score favorably. We validate this hypothesis in a broad experimental analysis over 6 publicly available datasets.Comment: 2017 IEEE Computer Vision and Pattern Recognition (CVPR) Workshop
    • …
    corecore