85 research outputs found

    Consensus graph and spectral representation for one-step multi-view kernel based clustering

    Get PDF
    Recently, multi-view clustering has received much attention in the fields of machine learning and pattern recognition. Spectral clustering for single and multiple views has been the common solution. Despite its good clustering performance, it has a major limitation: it requires an extra step of clustering. This extra step, which could be the famous k-means clustering, depends heavily on initialization, which may affect the quality of the clustering result. To overcome this problem, a new method called Multiview Clustering via Consensus Graph Learning and Nonnegative Embedding (MVCGE) is presented in this paper. In the proposed approach, the consensus affinity matrix (graph matrix), consensus representation and cluster index matrix (nonnegative embedding) are learned simultaneously in a unified framework. Our proposed method takes as input the different kernel matrices corresponding to the different views. The proposed learning model integrates two interesting constraints: (i) the cluster indices should be as smooth as possible over the consensus graph and (ii) the cluster indices are set to be as close as possible to the graph convolution of the consensus representation. In this approach, no post-processing such as k-means or spectral rotation is required. Our approach is tested with real and synthetic datasets. The experiments performed show that the proposed method performs well compared to many state-of-the-art approaches

    Contribution to Graph-based Multi-view Clustering: Algorithms and Applications

    Get PDF
    185 p.In this thesis, we study unsupervised learning, specifically, clustering methods for dividing data into meaningful groups. One major challenge is how to find an efficient algorithm with low computational complexity to deal with different types and sizes of datasets.For this purpose, we propose two approaches. The first approach is named "Multi-view Clustering via Kernelized Graph and Nonnegative Embedding" (MKGNE), and the second approach is called "Multi-view Clustering via Consensus Graph Learning and Nonnegative Embedding" (MVCGE). These two approaches jointly solve four tasks. They jointly estimate the unified similarity matrix over all views using the kernel tricks, the unified spectral projection of the data, the clusterindicator matrix, and the weight of each view without additional parameters. With these two approaches, there is no need for any postprocessing such as k-means clustering.In a further study, we propose a method named "Multi-view Spectral Clustering via Constrained Nonnegative Embedding" (CNESE). This method can overcome the drawbacks of the spectral clustering approaches, since they only provide a nonlinear projection of the data, on which an additional step of clustering is required. This can degrade the quality of the final clustering due to various factors such as the initialization process or outliers. Overcoming these drawbacks can be done by introducing a nonnegative embedding matrix which gives the final clustering assignment. In addition, some constraints are added to the targeted matrix to enhance the clustering performance.In accordance with the above methods, a new method called "Multi-view Spectral Clustering with a self-taught Robust Graph Learning" (MCSRGL) has been developed. Different from other approaches, this method integrates two main paradigms into the one-step multi-view clustering model. First, we construct an additional graph by using the cluster label space in addition to the graphs associated with the data space. Second, a smoothness constraint is exploited to constrain the cluster-label matrix and make it more consistent with the data views and the label view.Moreover, we propose two unified frameworks for multi-view clustering in Chapter 9. In these frameworks, we attempt to determine a view-based graphs, the consensus graph, the consensus spectral representation, and the soft clustering assignments. These methods retain the main advantages of the aforementioned methods and integrate the concepts of consensus and unified matrices. By using the unified matrices, we enforce the matrices of different views to be similar, and thus the problem of noise and inconsistency between different views will be reduced.Extensive experiments were conducted on several public datasets with different types and sizes, varying from face image datasets, to document datasets, handwritten datasets, and synthetics datasets. We provide several analyses of the proposed algorithms, including ablation studies, hyper-parameter sensitivity analyses, and computational costs. The experimental results show that the developed algorithms through this thesis are relevant and outperform several competing methods

    Dual Information Enhanced Multi-view Attributed Graph Clustering

    Full text link
    Multi-view attributed graph clustering is an important approach to partition multi-view data based on the attribute feature and adjacent matrices from different views. Some attempts have been made in utilizing Graph Neural Network (GNN), which have achieved promising clustering performance. Despite this, few of them pay attention to the inherent specific information embedded in multiple views. Meanwhile, they are incapable of recovering the latent high-level representation from the low-level ones, greatly limiting the downstream clustering performance. To fill these gaps, a novel Dual Information enhanced multi-view Attributed Graph Clustering (DIAGC) method is proposed in this paper. Specifically, the proposed method introduces the Specific Information Reconstruction (SIR) module to disentangle the explorations of the consensus and specific information from multiple views, which enables GCN to capture the more essential low-level representations. Besides, the Mutual Information Maximization (MIM) module maximizes the agreement between the latent high-level representation and low-level ones, and enables the high-level representation to satisfy the desired clustering structure with the help of the Self-supervised Clustering (SC) module. Extensive experiments on several real-world benchmarks demonstrate the effectiveness of the proposed DIAGC method compared with the state-of-the-art baselines.Comment: 11 pages, 4 figure
    corecore