269 research outputs found

    Analysis of Trajectories by Preserving Structural Information

    Get PDF
    The analysis of trajectories from traffic data is an established and yet fast growing area of research in the related fields of Geo-analytics and Geographic Information Systems (GIS). It has a broad range of applications that impact lives of millions of people, e.g., in urban planning, transportation and navigation systems and localized search methods. Most of these applications share some underlying basic tasks which are related to matching, clustering and classification of trajectories. And, these tasks in turn share some underlying problems, i.e., dealing with the noisy and variable length spatio-temporal sequences in the wild. In our view, these problems can be handled in a better manner by exploiting the spatio-temporal relationships (or structural information) in sampled trajectory points that remain considerably unharmed during the measurement process. Although, the usage of such structural information has allowed breakthroughs in other fields related to the analysis of complex data sets [18], surprisingly, there is no existing approach in trajectory analysis that looks at this structural information in a unified way across multiple tasks. In this thesis, we build upon these observations and give a unified treatment of structural information in order to improve trajectory analysis tasks. This treatment explores for the first time that sequences, graphs, and kernels are common to machine learning and geo-analytics. This common language allows to pool the corresponding methods and knowledge to help solving the challenges raised by the ever growing amount of movement data by developing new analysis models and methods. This is illustrated in several ways. For example, we introduce new problem settings, distance functions and a visualization scheme in the area of trajectory analysis. We also connect the broad fild of kernel methods to the analysis of trajectories, and, we strengthen and revisit the link between biological sequence methods and analysis of trajectories. Finally, the results of our experiments show that - by incorporating the structural information - our methods improve over state-of-the-art in the focused tasks, i.e., map matching, clustering and traffic event detection

    Dynamic PET image reconstruction utilizing intrinsic data-driven HYPR4D denoising kernel

    Get PDF
    Purpose: Reconstructed PET images are typically noisy, especially in dynamic imaging where the acquired data are divided into several short temporal frames. High noise in the reconstructed images translates to poor precision/reproducibility of image features. One important role of “denoising” is therefore to improve the precision of image features. However, typical denoising methods achieve noise reduction at the expense of accuracy. In this work, we present a novel four-dimensional (4D) denoised image reconstruction framework, which we validate using 4D simulations, experimental phantom, and clinical patient data, to achieve 4D noise reduction while preserving spatiotemporal patterns/minimizing error introduced by denoising. Methods: Our proposed 4D denoising operator/kernel is based on HighlY constrained backPRojection (HYPR), which is applied either after each update of OSEM reconstruction of dynamic 4D PET data or within the recently proposed kernelized reconstruction framework inspired by kernel methods in machine learning. Our HYPR4D kernel makes use of the spatiotemporal high frequency features extracted from a 4D composite, generated within the reconstruction, to preserve the spatiotemporal patterns and constrain the 4D noise increment of the image estimate. Results: Results from simulations, experimental phantom, and patient data showed that the HYPR4D kernel with our proposed 4D composite outperformed other denoising methods, such as the standard OSEM with spatial filter, OSEM with 4D filter, and HYPR kernel method with the conventional 3D composite in conjunction with recently proposed High Temporal Resolution kernel (HYPRC3D-HTR), in terms of 4D noise reduction while preserving the spatiotemporal patterns or 4D resolution within the 4D image estimate. Consequently, the error in outcome measures obtained from the HYPR4D method was less dependent on the region size, contrast, and uniformity/functional patterns within the target structures compared to the other methods. For outcome measures that depend on spatiotemporal tracer uptake patterns such as the nondisplaceable Binding Potential (BPND), the root mean squared error in regional mean of voxel BPND values was reduced from ~8% (OSEM with spatial or 4D filter) to ~3% using HYPRC3D-HTR and was further reduced to ~2% using our proposed HYPR4D method for relatively small target structures (~10 mm in diameter). At the voxel level, HYPR4D produced two to four times lower mean absolute error in BPND relative to HYPRC3D-HTR. Conclusion: As compared to conventional methods, our proposed HYPR4D method can produce more robust and accurate image features without requiring any prior information

    Cyclist Detection, Tracking, and Trajectory Analysis in Urban Traffic Video Data

    Full text link
    The major objective of this thesis work is examining computer vision and machine learning detection methods, tracking algorithms and trajectory analysis for cyclists in traffic video data and developing an efficient system for cyclist counting. Due to the growing number of cyclist accidents on urban roads, methods for collecting information on cyclists are of significant importance to the Department of Transportation. The collected information provides insights into solving critical problems related to transportation planning, implementing safety countermeasures, and managing traffic flow efficiently. Intelligent Transportation System (ITS) employs automated tools to collect traffic information from traffic video data. In comparison to other road users, such as cars and pedestrians, the automated cyclist data collection is relatively a new research area. In this work, a vision-based method for gathering cyclist count data at intersections and road segments is developed. First, we develop methodology for an efficient detection and tracking of cyclists. The combination of classification features along with motion based properties are evaluated to detect cyclists in the test video data. A Convolutional Neural Network (CNN) based detector called You Only Look Once (YOLO) is implemented to increase the detection accuracy. In the next step, the detection results are fed into a tracker which is implemented based on the Kernelized Correlation Filters (KCF) which in cooperation with the bipartite graph matching algorithm allows to track multiple cyclists, concurrently. Then, a trajectory rebuilding method and a trajectory comparison model are applied to refine the accuracy of tracking and counting. The trajectory comparison is performed based on semantic similarity approach. The proposed counting method is the first cyclist counting method that has the ability to count cyclists under different movement patterns. The trajectory data obtained can be further utilized for cyclist behavioral modeling and safety analysis
    • …
    corecore