17 research outputs found

    Kernelizations for the hybridization number problem on multiple nonbinary trees

    Get PDF
    Given a finite set XX, a collection T\mathcal{T} of rooted phylogenetic trees on XX and an integer kk, the Hybridization Number problem asks if there exists a phylogenetic network on XX that displays all trees from T\mathcal{T} and has reticulation number at most kk. We show two kernelization algorithms for Hybridization Number, with kernel sizes 4k(5k)t4k(5k)^t and 20k2(Δ+−1)20k^2(\Delta^+-1) respectively, with tt the number of input trees and Δ+\Delta^+ their maximum outdegree. Experiments on simulated data demonstrate the practical relevance of these kernelization algorithms. In addition, we present an nf(k)tn^{f(k)}t-time algorithm, with n=∣X∣n=|X| and ff some computable function of kk

    On unrooted and root-uncertain variants of several well-known phylogenetic network problems

    Get PDF
    The hybridization number problem requires us to embed a set of binary rooted phylogenetic trees into a binary rooted phylogenetic network such that the number of nodes with indegree two is minimized. However, from a biological point of view accurately inferring the root location in a phylogenetic tree is notoriously difficult and poor root placement can artificially inflate the hybridization number. To this end we study a number of relaxed variants of this problem. We start by showing that the fundamental problem of determining whether an \emph{unrooted} phylogenetic network displays (i.e. embeds) an \emph{unrooted} phylogenetic tree, is NP-hard. On the positive side we show that this problem is FPT in reticulation number. In the rooted case the corresponding FPT result is trivial, but here we require more subtle argumentation. Next we show that the hybridization number problem for unrooted networks (when given two unrooted trees) is equivalent to the problem of computing the Tree Bisection and Reconnect (TBR) distance of the two unrooted trees. In the third part of the paper we consider the "root uncertain" variant of hybridization number. Here we are free to choose the root location in each of a set of unrooted input trees such that the hybridization number of the resulting rooted trees is minimized. On the negative side we show that this problem is APX-hard. On the positive side, we show that the problem is FPT in the hybridization number, via kernelization, for any number of input trees.Comment: 28 pages, 8 Figure

    New FPT algorithms for finding the temporal hybridization number for sets of phylogenetic trees

    Full text link
    We study the problem of finding a temporal hybridization network for a set of phylogenetic trees that minimizes the number of reticulations. First, we introduce an FPT algorithm for this problem on an arbitrary set of mm binary trees with nn leaves each with a running time of O(5k⋅n⋅m)O(5^k\cdot n\cdot m), where kk is the minimum temporal hybridization number. We also present the concept of temporal distance, which is a measure for how close a tree-child network is to being temporal. Then we introduce an algorithm for computing a tree-child network with temporal distance at most dd and at most kk reticulations in O((8k)d5k⋅n⋅m)O((8k)^d5^ k\cdot n\cdot m) time. Lastly, we introduce a O(6kk!⋅k⋅n2)O(6^kk!\cdot k\cdot n^2) time algorithm for computing a minimum temporal hybridization network for a set of two nonbinary trees. We also provide an implementation of all algorithms and an experimental analysis on their performance

    A tight kernel for computing the tree bisection and reconnection distance between two phylogenetic trees

    Get PDF
    In 2001 Allen and Steel showed that, if subtree and chain reduction rules have been applied to two unrooted phylogenetic trees, the reduced trees will have at most 28k taxa where k is the TBR (Tree Bisection and Reconnection) distance between the two trees. Here we reanalyse Allen and Steel's kernelization algorithm and prove that the reduced instances will in fact have at most 15k-9 taxa. Moreover we show, by describing a family of instances which have exactly 15k-9 taxa after reduction, that this new bound is tight. These instances also have no common clusters, showing that a third commonly-encountered reduction rule, the cluster reduction, cannot further reduce the size of the kernel in the worst case. To achieve these results we introduce and use "unrooted generators" which are analogues of rooted structures that have appeared earlier in the phylogenetic networks literature. Using similar argumentation we show that, for the minimum hybridization problem on two rooted trees, 9k-2 is a tight bound (when subtree and chain reduction rules have been applied) and 9k-4 is a tight bound (when, additionally, the cluster reduction has been applied) on the number of taxa, where k is the hybridization number of the two trees.Comment: One figure added, two small typos fixed. This version to appear in SIDMA (SIAM Journal on Discrete Mathematics

    Cyclic generators and an improved linear kernel for the rooted subtree prune and regraft distance

    Get PDF
    The rooted subtree prune and regraft (rSPR) distance between two rooted binary phylogenetic trees is a well-studied measure of topological dissimilarity that is NP-hard to compute. Here we describe an improved linear kernel for the problem. In particular, we show that if the classical subtree and chain reduction rules are augmented with a modified type of chain reduction rule, the resulting trees have at most 9k-3 leaves, where k is the rSPR distance; and that this bound is tight. The previous best-known linear kernel had size O(28k). To achieve this improvement we introduce cyclic generators, which can be viewed as cyclic analogues of the generators used in the phylogenetic networks literature. As a corollary to our main result we also give an improved weighted linear kernel for the minimum hybridization problem on two rooted binary phylogenetic trees

    Embedding Phylogenetic Trees in Networks of Low Treewidth

    Get PDF
    Given a rooted, binary phylogenetic network and a rooted, binary phylogenetic tree, can the tree be embedded into the network? This problem, called Tree Containment, arises when validating networks constructed by phylogenetic inference methods. We present the first algorithm for (rooted) Tree Containment using the treewidth t of the input network N as parameter, showing that the problem can be solved in 2O(t2) |N| time and space.Optimizatio

    New FPT algorithms for finding the temporal hybridization number for sets of phylogenetic trees

    Get PDF
    We study the problem of finding a temporal hybridization network containing at most k reticulations, for an input consisting of a set of phylogenetic trees. First, we introduce an FPT algorithm for the problem on an arbitrary set of m binary trees with n leaves each with a running time of O(5 k· n· m). We also present the concept of temporal distance, which is a measure for how close a tree-child network is to being temporal. Then we introduce an algorithm for computing a tree-child network with temporal distance at most d and at most k reticulations in O((8 k) d5 k· k· n· m) time. Lastly, we introduce an O(6 kk! · k· n2) time algorithm for computing a temporal hybridization network for a set of two nonbinary trees. We also provide an implementation of all algorithms and an experimental analysis on their performance

    On Unrooted and Root-Uncertain Variants of Several Well-Known Phylogenetic Network Problems

    Get PDF
    International audienceThe hybridization number problem requires us to embed a set of binary rooted phylogenetic trees into a binary rooted phylogenetic network such that the number of nodes with indegree two is minimized. However, from a biological point of view accurately inferring the root location in a phylogenetic tree is notoriously difficult and poor root placement can artificially inflate the hybridization number. To thisend we study a number of relaxed variants of this problem. We start by showing that the fundamental problem of determining whether an unrooted phylogenetic network displays (i.e. embeds) an unrooted phylogenetic tree, is NP-hard. On the positive side we show that this problem is FPT in reticulation number. In the rooted case the corresponding FPT result is trivial, but here we require more subtle argumentation. Next we show that the hybridization number problem for unrooted networks (when given two unrooted trees) is equivalent to the problem of computing the tree bisection and reconnect distance of the two unrooted trees. In the third part of the paper we consider the “root uncertain” variant of hybridization number. Here we are free to choose the root location in each of a set of unrooted input trees such that the hybridization number of the resulting rooted trees is minimized. On the negative side we show that this problem is APX-hard. On the positive side, we show that the problem is FPT in the hybridization number, via kernelization, for any number of input trees
    corecore