77 research outputs found

    Kernels for Below-Upper-Bound Parameterizations of the Hitting Set and Directed Dominating Set Problems

    Get PDF
    In the {\sc Hitting Set} problem, we are given a collection F\cal F of subsets of a ground set VV and an integer pp, and asked whether VV has a pp-element subset that intersects each set in F\cal F. We consider two parameterizations of {\sc Hitting Set} below tight upper bounds: p=m−kp=m-k and p=n−kp=n-k. In both cases kk is the parameter. We prove that the first parameterization is fixed-parameter tractable, but has no polynomial kernel unless coNP⊆\subseteqNP/poly. The second parameterization is W[1]-complete, but the introduction of an additional parameter, the degeneracy of the hypergraph H=(V,F)H=(V,{\cal F}), makes the problem not only fixed-parameter tractable, but also one with a linear kernel. Here the degeneracy of H=(V,F)H=(V,{\cal F}) is the minimum integer dd such that for each X⊂VX\subset V the hypergraph with vertex set V∖XV\setminus X and edge set containing all edges of F\cal F without vertices in XX, has a vertex of degree at most d.d. In {\sc Nonblocker} ({\sc Directed Nonblocker}), we are given an undirected graph (a directed graph) GG on nn vertices and an integer kk, and asked whether GG has a set XX of n−kn-k vertices such that for each vertex y∈̞Xy\not\in X there is an edge (arc) from a vertex in XX to yy. {\sc Nonblocker} can be viewed as a special case of {\sc Directed Nonblocker} (replace an undirected graph by a symmetric digraph). Dehne et al. (Proc. SOFSEM 2006) proved that {\sc Nonblocker} has a linear-order kernel. We obtain a linear-order kernel for {\sc Directed Nonblocker}

    Tight Kernel Bounds for Problems on Graphs with Small Degeneracy

    Full text link
    In this paper we consider kernelization for problems on d-degenerate graphs, i.e. graphs such that any subgraph contains a vertex of degree at most dd. This graph class generalizes many classes of graphs for which effective kernelization is known to exist, e.g. planar graphs, H-minor free graphs, and H-topological-minor free graphs. We show that for several natural problems on d-degenerate graphs the best known kernelization upper bounds are essentially tight.Comment: Full version of ESA 201

    Kernelization and Sparseness: the case of Dominating Set

    Get PDF
    We prove that for every positive integer rr and for every graph class G\mathcal G of bounded expansion, the rr-Dominating Set problem admits a linear kernel on graphs from G\mathcal G. Moreover, when G\mathcal G is only assumed to be nowhere dense, then we give an almost linear kernel on G\mathcal G for the classic Dominating Set problem, i.e., for the case r=1r=1. These results generalize a line of previous research on finding linear kernels for Dominating Set and rr-Dominating Set. However, the approach taken in this work, which is based on the theory of sparse graphs, is radically different and conceptually much simpler than the previous approaches. We complement our findings by showing that for the closely related Connected Dominating Set problem, the existence of such kernelization algorithms is unlikely, even though the problem is known to admit a linear kernel on HH-topological-minor-free graphs. Also, we prove that for any somewhere dense class G\mathcal G, there is some rr for which rr-Dominating Set is W[22]-hard on G\mathcal G. Thus, our results fall short of proving a sharp dichotomy for the parameterized complexity of rr-Dominating Set on subgraph-monotone graph classes: we conjecture that the border of tractability lies exactly between nowhere dense and somewhere dense graph classes.Comment: v2: new author, added results for r-Dominating Sets in bounded expansion graph

    Essentially Tight Kernels For (Weakly) Closed Graphs

    Get PDF
    We study kernelization of classic hard graph problems when the input graphs fulfill triadic closure properties. More precisely, we consider the recently introduced parameters closure number cc and the weak closure number Îł\gamma [Fox et al., SICOMP 2020] in addition to the standard parameter solution size kk. For Capacitated Vertex Cover, Connected Vertex Cover, and Induced Matching we obtain the first kernels of size kO(Îł)k^{\mathcal{O}(\gamma)} and (Îłk)O(Îł)(\gamma k)^{\mathcal{O}(\gamma)}, respectively, thus extending previous kernelization results on degenerate graphs. The kernels are essentially tight, since these problems are unlikely to admit kernels of size ko(Îł)k^{o(\gamma)} by previous results on their kernelization complexity in degenerate graphs [Cygan et al., ACM TALG 2017]. In addition, we provide lower bounds for the kernelization of Independent Set on graphs with constant closure number~cc and kernels for Dominating Set on weakly closed split graphs and weakly closed bipartite graphs

    Lossy Kernels for Hitting Subgraphs

    Get PDF
    In this paper, we study the Connected H-hitting Set and Dominating Set problems from the perspective of approximate kernelization, a framework recently introduced by Lokshtanov et al. [STOC 2017]. For the Connected H-hitting set problem, we obtain an alpha-approximate kernel for every alpha>1 and complement it with a lower bound for the natural weighted version. We then perform a refined analysis of the tradeoff between the approximation factor and kernel size for the Dominating Set problem on d-degenerate graphs and provide an interpolation of approximate kernels between the known d^2-approximate kernel of constant size and 1-approximate kernel of size k^{O(d^2)}

    Linear kernels for outbranching problems in sparse digraphs

    Full text link
    In the kk-Leaf Out-Branching and kk-Internal Out-Branching problems we are given a directed graph DD with a designated root rr and a nonnegative integer kk. The question is to determine the existence of an outbranching rooted at rr that has at least kk leaves, or at least kk internal vertices, respectively. Both these problems were intensively studied from the points of view of parameterized complexity and kernelization, and in particular for both of them kernels with O(k2)O(k^2) vertices are known on general graphs. In this work we show that kk-Leaf Out-Branching admits a kernel with O(k)O(k) vertices on H\mathcal{H}-minor-free graphs, for any fixed family of graphs H\mathcal{H}, whereas kk-Internal Out-Branching admits a kernel with O(k)O(k) vertices on any graph class of bounded expansion.Comment: Extended abstract accepted for IPEC'15, 27 page

    Lossy Kernels for Connected Dominating Set on Sparse Graphs

    Get PDF
    For alpha > 1, an alpha-approximate (bi-)kernel for a problem Q is a polynomial-time algorithm that takes as input an instance (I, k) of Q and outputs an instance (I\u27,k\u27) (of a problem Q\u27) of size bounded by a function of k such that, for every c >= 1, a c-approximate solution for the new instance can be turned into a (c alpha)-approximate solution of the original instance in polynomial time. This framework of lossy kernelization was recently introduced by Lokshtanov et al. We study Connected Dominating Set (and its distance-r variant) parameterized by solution size on sparse graph classes like biclique-free graphs, classes of bounded expansion, and nowhere dense classes. We prove that for every alpha > 1, Connected Dominating Set admits a polynomial-size alpha-approximate (bi-)kernel on all the aforementioned classes. Our results are in sharp contrast to the kernelization complexity of Connected Dominating Set, which is known to not admit a polynomial kernel even on 2-degenerate graphs and graphs of bounded expansion, unless NP subseteq coNP/poly. We complement our results by the following conditional lower bound. We show that if a class C is somewhere dense and closed under taking subgraphs, then for some value of r in N there cannot exist an alpha-approximate bi-kernel for the (Connected) Distance-r Dominating Set problem on C for any alpha > 1 (assuming the Gap Exponential Time Hypothesis)

    The Graph Motif problem parameterized by the structure of the input graph

    Full text link
    The Graph Motif problem was introduced in 2006 in the context of biological networks. It consists of deciding whether or not a multiset of colors occurs in a connected subgraph of a vertex-colored graph. Graph Motif has been mostly analyzed from the standpoint of parameterized complexity. The main parameters which came into consideration were the size of the multiset and the number of colors. Though, in the many applications of Graph Motif, the input graph originates from real-life and has structure. Motivated by this prosaic observation, we systematically study its complexity relatively to graph structural parameters. For a wide range of parameters, we give new or improved FPT algorithms, or show that the problem remains intractable. For the FPT cases, we also give some kernelization lower bounds as well as some ETH-based lower bounds on the worst case running time. Interestingly, we establish that Graph Motif is W[1]-hard (while in W[P]) for parameter max leaf number, which is, to the best of our knowledge, the first problem to behave this way.Comment: 24 pages, accepted in DAM, conference version in IPEC 201
    • 

    corecore