224 research outputs found

    Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle Transversal

    Full text link
    The Odd Cycle Transversal problem (OCT) asks whether a given graph can be made bipartite by deleting at most kk of its vertices. In a breakthrough result Reed, Smith, and Vetta (Operations Research Letters, 2004) gave a \BigOh(4^kkmn) time algorithm for it, the first algorithm with polynomial runtime of uniform degree for every fixed kk. It is known that this implies a polynomial-time compression algorithm that turns OCT instances into equivalent instances of size at most \BigOh(4^k), a so-called kernelization. Since then the existence of a polynomial kernel for OCT, i.e., a kernelization with size bounded polynomially in kk, has turned into one of the main open questions in the study of kernelization. This work provides the first (randomized) polynomial kernelization for OCT. We introduce a novel kernelization approach based on matroid theory, where we encode all relevant information about a problem instance into a matroid with a representation of size polynomial in kk. For OCT, the matroid is built to allow us to simulate the computation of the iterative compression step of the algorithm of Reed, Smith, and Vetta, applied (for only one round) to an approximate odd cycle transversal which it is aiming to shrink to size kk. The process is randomized with one-sided error exponentially small in kk, where the result can contain false positives but no false negatives, and the size guarantee is cubic in the size of the approximate solution. Combined with an \BigOh(\sqrt{\log n})-approximation (Agarwal et al., STOC 2005), we get a reduction of the instance to size \BigOh(k^{4.5}), implying a randomized polynomial kernelization.Comment: Minor changes to agree with SODA 2012 version of the pape

    Feedback Vertex Set Inspired Kernel for Chordal Vertex Deletion

    Full text link
    Given a graph GG and a parameter kk, the Chordal Vertex Deletion (CVD) problem asks whether there exists a subset UV(G)U\subseteq V(G) of size at most kk that hits all induced cycles of size at least 4. The existence of a polynomial kernel for CVD was a well-known open problem in the field of Parameterized Complexity. Recently, Jansen and Pilipczuk resolved this question affirmatively by designing a polynomial kernel for CVD of size O(k161log58k)O(k^{161}\log^{58}k), and asked whether one can design a kernel of size O(k10)O(k^{10}). While we do not completely resolve this question, we design a significantly smaller kernel of size O(k12log10k)O(k^{12}\log^{10}k), inspired by the O(k2)O(k^2)-size kernel for Feedback Vertex Set. Furthermore, we introduce the notion of the independence degree of a vertex, which is our main conceptual contribution

    Streaming Kernelization

    Full text link
    Kernelization is a formalization of preprocessing for combinatorially hard problems. We modify the standard definition for kernelization, which allows any polynomial-time algorithm for the preprocessing, by requiring instead that the preprocessing runs in a streaming setting and uses O(poly(k)logx)\mathcal{O}(poly(k)\log|x|) bits of memory on instances (x,k)(x,k). We obtain several results in this new setting, depending on the number of passes over the input that such a streaming kernelization is allowed to make. Edge Dominating Set turns out as an interesting example because it has no single-pass kernelization but two passes over the input suffice to match the bounds of the best standard kernelization

    The Graph Motif problem parameterized by the structure of the input graph

    Full text link
    The Graph Motif problem was introduced in 2006 in the context of biological networks. It consists of deciding whether or not a multiset of colors occurs in a connected subgraph of a vertex-colored graph. Graph Motif has been mostly analyzed from the standpoint of parameterized complexity. The main parameters which came into consideration were the size of the multiset and the number of colors. Though, in the many applications of Graph Motif, the input graph originates from real-life and has structure. Motivated by this prosaic observation, we systematically study its complexity relatively to graph structural parameters. For a wide range of parameters, we give new or improved FPT algorithms, or show that the problem remains intractable. For the FPT cases, we also give some kernelization lower bounds as well as some ETH-based lower bounds on the worst case running time. Interestingly, we establish that Graph Motif is W[1]-hard (while in W[P]) for parameter max leaf number, which is, to the best of our knowledge, the first problem to behave this way.Comment: 24 pages, accepted in DAM, conference version in IPEC 201

    Parameterized Algorithms on Perfect Graphs for deletion to (r,)(r,\ell)-graphs

    Get PDF
    For fixed integers r,0r,\ell \geq 0, a graph GG is called an {\em (r,)(r,\ell)-graph} if the vertex set V(G)V(G) can be partitioned into rr independent sets and \ell cliques. The class of (r,)(r, \ell) graphs generalizes rr-colourable graphs (when =0)\ell =0) and hence not surprisingly, determining whether a given graph is an (r,)(r, \ell)-graph is \NP-hard even when r3r \geq 3 or 3\ell \geq 3 in general graphs. When rr and \ell are part of the input, then the recognition problem is NP-hard even if the input graph is a perfect graph (where the {\sc Chromatic Number} problem is solvable in polynomial time). It is also known to be fixed-parameter tractable (FPT) on perfect graphs when parameterized by rr and \ell. I.e. there is an f(r+\ell) \cdot n^{\Oh(1)} algorithm on perfect graphs on nn vertices where ff is some (exponential) function of rr and \ell. In this paper, we consider the parameterized complexity of the following problem, which we call {\sc Vertex Partization}. Given a perfect graph GG and positive integers r,,kr,\ell,k decide whether there exists a set SV(G)S\subseteq V(G) of size at most kk such that the deletion of SS from GG results in an (r,)(r,\ell)-graph. We obtain the following results: \begin{enumerate} \item {\sc Vertex Partization} on perfect graphs is FPT when parameterized by k+r+k+r+\ell. \item The problem does not admit any polynomial sized kernel when parameterized by k+r+k+r+\ell. In other words, in polynomial time, the input graph can not be compressed to an equivalent instance of size polynomial in k+r+k+r+\ell. In fact, our result holds even when k=0k=0. \item When r,r,\ell are universal constants, then {\sc Vertex Partization} on perfect graphs, parameterized by kk, has a polynomial sized kernel. \end{enumerate

    Tree Deletion Set has a Polynomial Kernel (but no OPT^O(1) approximation)

    Get PDF
    In the Tree Deletion Set problem the input is a graph G together with an integer k. The objective is to determine whether there exists a set S of at most k vertices such that G-S is a tree. The problem is NP-complete and even NP-hard to approximate within any factor of OPT^c for any constant c. In this paper we give a O(k^4) size kernel for the Tree Deletion Set problem. To the best of our knowledge our result is the first counterexample to the "conventional wisdom" that kernelization algorithms automatically provide approximation algorithms with approximation ratio close to the size of the kernel. An appealing feature of our kernelization algorithm is a new algebraic reduction rule that we use to handle the instances on which Tree Deletion Set is hard to approximate

    Hierarchies of Inefficient Kernelizability

    Full text link
    The framework of Bodlaender et al. (ICALP 2008) and Fortnow and Santhanam (STOC 2008) allows us to exclude the existence of polynomial kernels for a range of problems under reasonable complexity-theoretical assumptions. However, there are also some issues that are not addressed by this framework, including the existence of Turing kernels such as the "kernelization" of Leaf Out Branching(k) into a disjunction over n instances of size poly(k). Observing that Turing kernels are preserved by polynomial parametric transformations, we define a kernelization hardness hierarchy, akin to the M- and W-hierarchy of ordinary parameterized complexity, by the PPT-closure of problems that seem likely to be fundamentally hard for efficient Turing kernelization. We find that several previously considered problems are complete for our fundamental hardness class, including Min Ones d-SAT(k), Binary NDTM Halting(k), Connected Vertex Cover(k), and Clique(k log n), the clique problem parameterized by k log n
    corecore