198 research outputs found

    Hierarchies of Inefficient Kernelizability

    Full text link
    The framework of Bodlaender et al. (ICALP 2008) and Fortnow and Santhanam (STOC 2008) allows us to exclude the existence of polynomial kernels for a range of problems under reasonable complexity-theoretical assumptions. However, there are also some issues that are not addressed by this framework, including the existence of Turing kernels such as the "kernelization" of Leaf Out Branching(k) into a disjunction over n instances of size poly(k). Observing that Turing kernels are preserved by polynomial parametric transformations, we define a kernelization hardness hierarchy, akin to the M- and W-hierarchy of ordinary parameterized complexity, by the PPT-closure of problems that seem likely to be fundamentally hard for efficient Turing kernelization. We find that several previously considered problems are complete for our fundamental hardness class, including Min Ones d-SAT(k), Binary NDTM Halting(k), Connected Vertex Cover(k), and Clique(k log n), the clique problem parameterized by k log n

    Approximate Turing Kernelization for Problems Parameterized by Treewidth

    Get PDF
    We extend the notion of lossy kernelization, introduced by Lokshtanov et al. [STOC 2017], to approximate Turing kernelization. An α\alpha-approximate Turing kernel for a parameterized optimization problem is a polynomial-time algorithm that, when given access to an oracle that outputs cc-approximate solutions in O(1)O(1) time, obtains an (α⋅c)(\alpha \cdot c)-approximate solution to the considered problem, using calls to the oracle of size at most f(k)f(k) for some function ff that only depends on the parameter. Using this definition, we show that Independent Set parameterized by treewidth ℓ\ell has a (1+Δ)(1+\varepsilon)-approximate Turing kernel with O(ℓ2Δ)O(\frac{\ell^2}{\varepsilon}) vertices, answering an open question posed by Lokshtanov et al. [STOC 2017]. Furthermore, we give (1+Δ)(1+\varepsilon)-approximate Turing kernels for the following graph problems parameterized by treewidth: Vertex Cover, Edge Clique Cover, Edge-Disjoint Triangle Packing and Connected Vertex Cover. We generalize the result for Independent Set and Vertex Cover, by showing that all graph problems that we will call "friendly" admit (1+Δ)(1+\varepsilon)-approximate Turing kernels of polynomial size when parameterized by treewidth. We use this to obtain approximate Turing kernels for Vertex-Disjoint HH-packing for connected graphs HH, Clique Cover, Feedback Vertex Set and Edge Dominating Set

    FPT is Characterized by Useful Obstruction Sets

    Full text link
    Many graph problems were first shown to be fixed-parameter tractable using the results of Robertson and Seymour on graph minors. We show that the combination of finite, computable, obstruction sets and efficient order tests is not just one way of obtaining strongly uniform FPT algorithms, but that all of FPT may be captured in this way. Our new characterization of FPT has a strong connection to the theory of kernelization, as we prove that problems with polynomial kernels can be characterized by obstruction sets whose elements have polynomial size. Consequently we investigate the interplay between the sizes of problem kernels and the sizes of the elements of such obstruction sets, obtaining several examples of how results in one area yield new insights in the other. We show how exponential-size minor-minimal obstructions for pathwidth k form the crucial ingredient in a novel OR-cross-composition for k-Pathwidth, complementing the trivial AND-composition that is known for this problem. In the other direction, we show that OR-cross-compositions into a parameterized problem can be used to rule out the existence of efficiently generated quasi-orders on its instances that characterize the NO-instances by polynomial-size obstructions.Comment: Extended abstract with appendix, as accepted to WG 201

    Guarantees and Limits of Preprocessing in Constraint Satisfaction and Reasoning

    Full text link
    We present a first theoretical analysis of the power of polynomial-time preprocessing for important combinatorial problems from various areas in AI. We consider problems from Constraint Satisfaction, Global Constraints, Satisfiability, Nonmonotonic and Bayesian Reasoning under structural restrictions. All these problems involve two tasks: (i) identifying the structure in the input as required by the restriction, and (ii) using the identified structure to solve the reasoning task efficiently. We show that for most of the considered problems, task (i) admits a polynomial-time preprocessing to a problem kernel whose size is polynomial in a structural problem parameter of the input, in contrast to task (ii) which does not admit such a reduction to a problem kernel of polynomial size, subject to a complexity theoretic assumption. As a notable exception we show that the consistency problem for the AtMost-NValue constraint admits a polynomial kernel consisting of a quadratic number of variables and domain values. Our results provide a firm worst-case guarantees and theoretical boundaries for the performance of polynomial-time preprocessing algorithms for the considered problems.Comment: arXiv admin note: substantial text overlap with arXiv:1104.2541, arXiv:1104.556

    A Hierarchy of Polynomial Kernels

    Full text link
    In parameterized algorithmics, the process of kernelization is defined as a polynomial time algorithm that transforms the instance of a given problem to an equivalent instance of a size that is limited by a function of the parameter. As, afterwards, this smaller instance can then be solved to find an answer to the original question, kernelization is often presented as a form of preprocessing. A natural generalization of kernelization is the process that allows for a number of smaller instances to be produced to provide an answer to the original problem, possibly also using negation. This generalization is called Turing kernelization. Immediately, questions of equivalence occur or, when is one form possible and not the other. These have been long standing open problems in parameterized complexity. In the present paper, we answer many of these. In particular, we show that Turing kernelizations differ not only from regular kernelization, but also from intermediate forms as truth-table kernelizations. We achieve absolute results by diagonalizations and also results on natural problems depending on widely accepted complexity theoretic assumptions. In particular, we improve on known lower bounds for the kernel size of compositional problems using these assumptions

    Lossy Kernelization

    Get PDF
    In this paper we propose a new framework for analyzing the performance of preprocessing algorithms. Our framework builds on the notion of kernelization from parameterized complexity. However, as opposed to the original notion of kernelization, our definitions combine well with approximation algorithms and heuristics. The key new definition is that of a polynomial size α\alpha-approximate kernel. Loosely speaking, a polynomial size α\alpha-approximate kernel is a polynomial time pre-processing algorithm that takes as input an instance (I,k)(I,k) to a parameterized problem, and outputs another instance (Iâ€Č,kâ€Č)(I',k') to the same problem, such that ∣Iâ€Č∣+kâ€Č≀kO(1)|I'|+k' \leq k^{O(1)}. Additionally, for every c≄1c \geq 1, a cc-approximate solution sâ€Čs' to the pre-processed instance (Iâ€Č,kâ€Č)(I',k') can be turned in polynomial time into a (c⋅α)(c \cdot \alpha)-approximate solution ss to the original instance (I,k)(I,k). Our main technical contribution are α\alpha-approximate kernels of polynomial size for three problems, namely Connected Vertex Cover, Disjoint Cycle Packing and Disjoint Factors. These problems are known not to admit any polynomial size kernels unless NP⊆coNP/polyNP \subseteq coNP/poly. Our approximate kernels simultaneously beat both the lower bounds on the (normal) kernel size, and the hardness of approximation lower bounds for all three problems. On the negative side we prove that Longest Path parameterized by the length of the path and Set Cover parameterized by the universe size do not admit even an α\alpha-approximate kernel of polynomial size, for any α≄1\alpha \geq 1, unless NP⊆coNP/polyNP \subseteq coNP/poly. In order to prove this lower bound we need to combine in a non-trivial way the techniques used for showing kernelization lower bounds with the methods for showing hardness of approximationComment: 58 pages. Version 2 contain new results: PSAKS for Cycle Packing and approximate kernel lower bounds for Set Cover and Hitting Set parameterized by universe siz

    Linear kernels for outbranching problems in sparse digraphs

    Full text link
    In the kk-Leaf Out-Branching and kk-Internal Out-Branching problems we are given a directed graph DD with a designated root rr and a nonnegative integer kk. The question is to determine the existence of an outbranching rooted at rr that has at least kk leaves, or at least kk internal vertices, respectively. Both these problems were intensively studied from the points of view of parameterized complexity and kernelization, and in particular for both of them kernels with O(k2)O(k^2) vertices are known on general graphs. In this work we show that kk-Leaf Out-Branching admits a kernel with O(k)O(k) vertices on H\mathcal{H}-minor-free graphs, for any fixed family of graphs H\mathcal{H}, whereas kk-Internal Out-Branching admits a kernel with O(k)O(k) vertices on any graph class of bounded expansion.Comment: Extended abstract accepted for IPEC'15, 27 page
    • 

    corecore