14 research outputs found

    An Improved Continuous-Action Extended Classifier Systems for Function Approximation

    Get PDF
    AbstractDue to their structural simplicity and superior generalization capability, Extended Classifier Systems (XCSs) are gaining popularity within the Artificial Intelligence community. In this study an improved XCS with continuous actions is introduced for function approximation purposes. The proposed XCSF uses “prediction zones,” rather than distinct “prediction values,” to enable multi-member match sets that would allow multiple rules to be evaluated per training step. It is shown that this would accelerate the training procedure and reduce the computational cost associated with the training phase. The improved XCSF is also shown to produce more accurate rules than the classical classifier system when it comes to approximating complex nonlinear functions

    Toward Open-Set Text-Independent Speaker Identification in Tactical Communications

    Get PDF
    Abstract-We present the design and implementation of an open-set textindependent speaker identification system using genetic Learning Classifier Systems (LCS). We examine the use of this system in a real-number problem domain, where there is strong interest in its application to tactical communications. We investigate different encoding methods for representing real-number knowledge and study the efficacy of each method for speaker identification. We also identify several difficulties in solving the speaker identification problems with LCS and introduce new approaches to resolve the difficulties. Experimental results show that our system successfully learns 200 voice features at accuracies of 90% to 100% and 15,000 features to more than 80% for the closed-set problem, which is considered a strong result in the speaker identification community. The open-set capability is also comparable to existing numeric-based methods

    SupRB: A Supervised Rule-based Learning System for Continuous Problems

    Get PDF
    We propose the SupRB learning system, a new Pittsburgh-style learning classifier system (LCS) for supervised learning on multi-dimensional continuous decision problems. SupRB learns an approximation of a quality function from examples (consisting of situations, choices and associated qualities) and is then able to make an optimal choice as well as predict the quality of a choice in a given situation. One area of application for SupRB is parametrization of industrial machinery. In this field, acceptance of the recommendations of machine learning systems is highly reliant on operators' trust. While an essential and much-researched ingredient for that trust is prediction quality, it seems that this alone is not enough. At least as important is a human-understandable explanation of the reasoning behind a recommendation. While many state-of-the-art methods such as artificial neural networks fall short of this, LCSs such as SupRB provide human-readable rules that can be understood very easily. The prevalent LCSs are not directly applicable to this problem as they lack support for continuous choices. This paper lays the foundations for SupRB and shows its general applicability on a simplified model of an additive manufacturing problem.Comment: Submitted to the Genetic and Evolutionary Computation Conference 2020 (GECCO 2020

    Investigating the Impact of Independent Rule Fitnesses in a Learning Classifier System

    Get PDF
    Achieving at least some level of explainability requires complex analyses for many machine learning systems, such as common black-box models. We recently proposed a new rule-based learning system, SupRB, to construct compact, interpretable and transparent models by utilizing separate optimizers for the model selection tasks concerning rule discovery and rule set composition.This allows users to specifically tailor their model structure to fulfil use-case specific explainability requirements. From an optimization perspective, this allows us to define clearer goals and we find that -- in contrast to many state of the art systems -- this allows us to keep rule fitnesses independent. In this paper we investigate this system's performance thoroughly on a set of regression problems and compare it against XCSF, a prominent rule-based learning system. We find the overall results of SupRB's evaluation comparable to XCSF's while allowing easier control of model structure and showing a substantially smaller sensitivity to random seeds and data splits. This increased control can aid in subsequently providing explanations for both training and final structure of the model.Comment: arXiv admin note: substantial text overlap with arXiv:2202.0167

    Hypothesis Testing with Classifier Systems

    Get PDF
    This thesis presents a new ML algorithm, HCS, taking inspiration from Learning Classifier Systems, Decision Trees and Statistical Hypothesis Testing, aimed at providing clearly understandable models of medical datasets. Analysis of medical datasets has some specific requirements not always fulfilled by standard Machine Learning methods. In particular, heterogeneous and missing data must be tolerated, the results should be easily interpretable. Moreover, often the combination of two or more attributes leads to non-linear effects not detectable for each attribute on its own. Although it has been designed specifically for medical datasets, HCS can be applied to a broad range of data types, making it suitable for many domains. We describe the details of the algorithm, and test its effectiveness on five real-world datasets

    Principled design of evolutionary learning sytems for large scale data mining

    Get PDF
    Currently, the data mining and machine learning fields are facing new challenges because of the amount of information that is collected and needs processing. Many sophisticated learning approaches cannot simply cope with large and complex domains, because of the unmanageable execution times or the loss of prediction and generality capacities that occurs when the domains become more complex. Therefore, to cope with the volumes of information of the current realworld problems there is a need to push forward the boundaries of sophisticated data mining techniques. This thesis is focused on improving the efficiency of Evolutionary Learning systems in large scale domains. Specifically the objective of this thesis is improving the efficiency of the Bioinformatic Hierarchical Evolutionary Learning (BioHEL) system, a system designed with the purpose of handling large domains. This is a classifier system that uses an Iterative Rule Learning approach to generate a set of rules one by one using consecutive Genetic Algorithms. This system have shown to be very competitive so far in large and complex domains. In particular, BioHEL has obtained very important results when solving protein structure prediction problems and has won related merits, such as being placed among the best algorithms for this purpose at the Critical Assessment of Techniques for Protein Structure Prediction (CASP) in 2008 and 2010, and winning the bronze medal at the HUMIES Awards for Human-competitive results in 2007. However, there is still a need to analyse this system in a principled way to determine how the current mechanisms work together to solve larger domains and determine the aspects of the system that can be improved towards this aim. To fulfil the objective of this thesis, the work is divided in two parts. In the first part of the thesis exhaustive experimentation was carried out to determine ways in which the system could be improved. From this exhaustive analysis three main weaknesses are pointed out: a) the problem-dependancy of parameters in BioHEL's fitness function, which results in having a system difficult to set up and which requires an extensive preliminary experimentation to determine the adequate values for these parameters; b) the execution time of the learning process, which at the moment does not use any parallelisation techniques and depends on the size of the training sets; and c) the lack of global supervision over the generated solutions which comes from the usage of the Iterative Rule Learning paradigm and produces larger rule sets in which there is no guarantee of minimality or maximal generality. The second part of the thesis is focused on tackling each one of the weaknesses abovementioned to have a system capable of handling larger domains. First a heuristic approach to set parameters within BioHEL's fitness function is developed. Second a new parallel evaluation process that runs on General Purpose Graphic Processing Units was developed. Finally, post-processing operators to tackle the generality and cardinality of the generated solutions are proposed. By means of these enhancements we managed to improve the BioHEL system to reduce both the learning and the preliminary experimentation time, increase the generality of the final solutions and make the system more accessible for end-users. Moreover, as the techniques discussed in this thesis can be easily extended to other Evolutionary Learning systems we consider them important additions to the research in this field towards tackling large scale domains

    Learning classifier systems from first principles: A probabilistic reformulation of learning classifier systems from the perspective of machine learning

    Get PDF
    Learning Classifier Systems (LCS) are a family of rule-based machine learning methods. They aim at the autonomous production of potentially human readable results that are the most compact generalised representation whilst also maintaining high predictive accuracy, with a wide range of application areas, such as autonomous robotics, economics, and multi-agent systems. Their design is mainly approached heuristically and, even though their performance is competitive in regression and classification tasks, they do not meet their expected performance in sequential decision tasks despite being initially designed for such tasks. It is out contention that improvement is hindered by a lack of theoretical understanding of their underlying mechanisms and dynamics.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore