1,448 research outputs found

    A High-Order Kernel Method for Diffusion and Reaction-Diffusion Equations on Surfaces

    Get PDF
    In this paper we present a high-order kernel method for numerically solving diffusion and reaction-diffusion partial differential equations (PDEs) on smooth, closed surfaces embedded in Rd\mathbb{R}^d. For two-dimensional surfaces embedded in R3\mathbb{R}^3, these types of problems have received growing interest in biology, chemistry, and computer graphics to model such things as diffusion of chemicals on biological cells or membranes, pattern formations in biology, nonlinear chemical oscillators in excitable media, and texture mappings. Our kernel method is based on radial basis functions (RBFs) and uses a semi-discrete approach (or the method-of-lines) in which the surface derivative operators that appear in the PDEs are approximated using collocation. The method only requires nodes at "scattered" locations on the surface and the corresponding normal vectors to the surface. Additionally, it does not rely on any surface-based metrics and avoids any intrinsic coordinate systems, and thus does not suffer from any coordinate distortions or singularities. We provide error estimates for the kernel-based approximate surface derivative operators and numerically study the accuracy and stability of the method. Applications to different non-linear systems of PDEs that arise in biology and chemistry are also presented

    Model Reduction and Neural Networks for Parametric PDEs

    Get PDF
    We develop a general framework for data-driven approximation of input-output maps between infinite-dimensional spaces. The proposed approach is motivated by the recent successes of neural networks and deep learning, in combination with ideas from model reduction. This combination results in a neural network approximation which, in principle, is defined on infinite-dimensional spaces and, in practice, is robust to the dimension of finite-dimensional approximations of these spaces required for computation. For a class of input-output maps, and suitably chosen probability measures on the inputs, we prove convergence of the proposed approximation methodology. Numerically we demonstrate the effectiveness of the method on a class of parametric elliptic PDE problems, showing convergence and robustness of the approximation scheme with respect to the size of the discretization, and compare our method with existing algorithms from the literature
    • …
    corecore