359 research outputs found

    Graph Laplacian for Image Anomaly Detection

    Get PDF
    Reed-Xiaoli detector (RXD) is recognized as the benchmark algorithm for image anomaly detection; however, it presents known limitations, namely the dependence over the image following a multivariate Gaussian model, the estimation and inversion of a high-dimensional covariance matrix, and the inability to effectively include spatial awareness in its evaluation. In this work, a novel graph-based solution to the image anomaly detection problem is proposed; leveraging the graph Fourier transform, we are able to overcome some of RXD's limitations while reducing computational cost at the same time. Tests over both hyperspectral and medical images, using both synthetic and real anomalies, prove the proposed technique is able to obtain significant gains over performance by other algorithms in the state of the art.Comment: Published in Machine Vision and Applications (Springer

    Robust Linear Spectral Unmixing using Anomaly Detection

    Full text link
    This paper presents a Bayesian algorithm for linear spectral unmixing of hyperspectral images that accounts for anomalies present in the data. The model proposed assumes that the pixel reflectances are linear mixtures of unknown endmembers, corrupted by an additional nonlinear term modelling anomalies and additive Gaussian noise. A Markov random field is used for anomaly detection based on the spatial and spectral structures of the anomalies. This allows outliers to be identified in particular regions and wavelengths of the data cube. A Bayesian algorithm is proposed to estimate the parameters involved in the model yielding a joint linear unmixing and anomaly detection algorithm. Simulations conducted with synthetic and real hyperspectral images demonstrate the accuracy of the proposed unmixing and outlier detection strategy for the analysis of hyperspectral images

    Low-Rank and Sparse Decomposition for Hyperspectral Image Enhancement and Clustering

    Get PDF
    In this dissertation, some new algorithms are developed for hyperspectral imaging analysis enhancement. Tensor data format is applied in hyperspectral dataset sparse and low-rank decomposition, which could enhance the classification and detection performance. And multi-view learning technique is applied in hyperspectral imaging clustering. Furthermore, kernel version of multi-view learning technique has been proposed, which could improve clustering performance. Most of low-rank and sparse decomposition algorithms are based on matrix data format for HSI analysis. As HSI contains high spectral dimensions, tensor based extended low-rank and sparse decomposition (TELRSD) is proposed in this dissertation for better performance of HSI classification with low-rank tensor part, and HSI detection with sparse tensor part. With this tensor based method, HSI is processed in 3D data format, and information between spectral bands and pixels maintain integrated during decomposition process. This proposed algorithm is compared with other state-of-art methods. And the experiment results show that TELRSD has the best performance among all those comparison algorithms. HSI clustering is an unsupervised task, which aims to group pixels into different groups without labeled information. Low-rank sparse subspace clustering (LRSSC) is the most popular algorithms for this clustering task. The spatial-spectral based multi-view low-rank sparse subspace clustering (SSMLC) algorithms is proposed in this dissertation, which extended LRSSC with multi-view learning technique. In this algorithm, spectral and spatial views are created to generate multi-view dataset of HSI, where spectral partition, morphological component analysis (MCA) and principle component analysis (PCA) are applied to create others views. Furthermore, kernel version of SSMLC (k-SSMLC) also has been investigated. The performance of SSMLC and k-SSMLC are compared with sparse subspace clustering (SSC), low-rank sparse subspace clustering (LRSSC), and spectral-spatial sparse subspace clustering (S4C). It has shown that SSMLC could improve the performance of LRSSC, and k-SSMLC has the best performance. The spectral clustering has been proved that it equivalent to non-negative matrix factorization (NMF) problem. In this case, NMF could be applied to the clustering problem. In order to include local and nonlinear features in data source, orthogonal NMF (ONMF), graph-regularized NMF (GNMF) and kernel NMF (k-NMF) has been proposed for better clustering performance. The non-linear orthogonal graph NMF combine both kernel, orthogonal and graph constraints in NMF (k-OGNMF), which push up the clustering performance further. In the HSI domain, kernel multi-view based orthogonal graph NMF (k-MOGNMF) is applied for subspace clustering, where k-OGNMF is extended with multi-view algorithm, and it has better performance and computation efficiency

    Spectral Target Detection using Physics-Based Modeling and a Manifold Learning Technique

    Get PDF
    Identification of materials from calibrated radiance data collected by an airborne imaging spectrometer depends strongly on the atmospheric and illumination conditions at the time of collection. This thesis demonstrates a methodology for identifying material spectra using the assumption that each unique material class forms a lower-dimensional manifold (surface) in the higher-dimensional spectral radiance space and that all image spectra reside on, or near, these theoretic manifolds. Using a physical model, a manifold characteristic of the target material exposed to varying illumination and atmospheric conditions is formed. A graph-based model is then applied to the radiance data to capture the intricate structure of each material manifold, followed by the application of the commute time distance (CTD) transformation to separate the target manifold from the background. Detection algorithms are then applied in the CTD subspace. This nonlinear transformation is based on a random walk on a graph and is derived from an eigendecomposition of the pseudoinverse of the graph Laplacian matrix. This work provides a geometric interpretation of the CTD transformation, its algebraic properties, the atmospheric and illumination parameters varied in the physics-based model, and the influence the target manifold samples have on the orientation of the coordinate axes in the transformed space. This thesis concludes by demonstrating improved detection results in the CTD subspace as compared to detection in the original spectral radiance space

    Improving Hyperspectral Subpixel Target Detection Using Hybrid Detection Space

    Full text link
    A Hyper-Spectral Image (HSI) has high spectral and low spatial resolution. As a result, most targets exist as subpixels, which pose challenges in target detection. Moreover, limitation of target and background samples always hinders the target detection performance. In this thesis, a hybrid method for subpixel target detection of an HSI using minimal prior knowledge is developed. The Matched Filter (MF) and Adaptive Cosine Estimator (ACE) are two popular algorithms in HSI target detection. They have different advantages in differentiating target from background. In the proposed method, the scores of MF and ACE algorithms are used to construct a hybrid detection space. First, some high abundance target spectra are randomly picked from the scene to perform initial detection to determine the target and background subsets. Then, the reference target spectrum and background covariance matrix are improved iteratively, using the hybrid detection space. As the iterations continue, the reference target spectrum gets closer and closer to the central line that connects the centers of target and background and resulting in noticeable improvement in target detection. Two synthetic datasets and two real datasets are used in the experiments. The results are evaluated based on the mean detection rate, Receiver Operating Characteristic (ROC) curve and observation of the detection results. Compared to traditional MF and ACE algorithms with Reed-Xiaoli Detector (RXD) background covariance matrix estimation, the new method shows much better performance on all four datasets. This method can be applied in environmental monitoring, mineral detection, as well as oceanography and forestry reconnaissance to search for extremely small target distribution in a large scene

    Hyperspectral Remote Sensing Data Analysis and Future Challenges

    Full text link
    corecore