10,665 research outputs found

    Spectral Norm of Random Kernel Matrices with Applications to Privacy

    Get PDF
    Kernel methods are an extremely popular set of techniques used for many important machine learning and data analysis applications. In addition to having good practical performances, these methods are supported by a well-developed theory. Kernel methods use an implicit mapping of the input data into a high dimensional feature space defined by a kernel function, i.e., a function returning the inner product between the images of two data points in the feature space. Central to any kernel method is the kernel matrix, which is built by evaluating the kernel function on a given sample dataset. In this paper, we initiate the study of non-asymptotic spectral theory of random kernel matrices. These are n x n random matrices whose (i,j)th entry is obtained by evaluating the kernel function on xix_i and xjx_j, where x1,...,xnx_1,...,x_n are a set of n independent random high-dimensional vectors. Our main contribution is to obtain tight upper bounds on the spectral norm (largest eigenvalue) of random kernel matrices constructed by commonly used kernel functions based on polynomials and Gaussian radial basis. As an application of these results, we provide lower bounds on the distortion needed for releasing the coefficients of kernel ridge regression under attribute privacy, a general privacy notion which captures a large class of privacy definitions. Kernel ridge regression is standard method for performing non-parametric regression that regularly outperforms traditional regression approaches in various domains. Our privacy distortion lower bounds are the first for any kernel technique, and our analysis assumes realistic scenarios for the input, unlike all previous lower bounds for other release problems which only hold under very restrictive input settings.Comment: 16 pages, 1 Figur

    The Degrees of Freedom of Partial Least Squares Regression

    Get PDF
    The derivation of statistical properties for Partial Least Squares regression can be a challenging task. The reason is that the construction of latent components from the predictor variables also depends on the response variable. While this typically leads to good performance and interpretable models in practice, it makes the statistical analysis more involved. In this work, we study the intrinsic complexity of Partial Least Squares Regression. Our contribution is an unbiased estimate of its Degrees of Freedom. It is defined as the trace of the first derivative of the fitted values, seen as a function of the response. We establish two equivalent representations that rely on the close connection of Partial Least Squares to matrix decompositions and Krylov subspace techniques. We show that the Degrees of Freedom depend on the collinearity of the predictor variables: The lower the collinearity is, the higher the Degrees of Freedom are. In particular, they are typically higher than the naive approach that defines the Degrees of Freedom as the number of components. Further, we illustrate how the Degrees of Freedom approach can be used for the comparison of different regression methods. In the experimental section, we show that our Degrees of Freedom estimate in combination with information criteria is useful for model selection.Comment: to appear in the Journal of the American Statistical Associatio

    Early stopping and non-parametric regression: An optimal data-dependent stopping rule

    Full text link
    The strategy of early stopping is a regularization technique based on choosing a stopping time for an iterative algorithm. Focusing on non-parametric regression in a reproducing kernel Hilbert space, we analyze the early stopping strategy for a form of gradient-descent applied to the least-squares loss function. We propose a data-dependent stopping rule that does not involve hold-out or cross-validation data, and we prove upper bounds on the squared error of the resulting function estimate, measured in either the L2(P)L^2(P) and L2(Pn)L^2(P_n) norm. These upper bounds lead to minimax-optimal rates for various kernel classes, including Sobolev smoothness classes and other forms of reproducing kernel Hilbert spaces. We show through simulation that our stopping rule compares favorably to two other stopping rules, one based on hold-out data and the other based on Stein's unbiased risk estimate. We also establish a tight connection between our early stopping strategy and the solution path of a kernel ridge regression estimator.Comment: 29 pages, 4 figure

    Statistical inference in mechanistic models: time warping for improved gradient matching

    Get PDF
    Inference in mechanistic models of non-linear differential equations is a challenging problem in current computational statistics. Due to the high computational costs of numerically solving the differential equations in every step of an iterative parameter adaptation scheme, approximate methods based on gradient matching have become popular. However, these methods critically depend on the smoothing scheme for function interpolation. The present article adapts an idea from manifold learning and demonstrates that a time warping approach aiming to homogenize intrinsic length scales can lead to a significant improvement in parameter estimation accuracy. We demonstrate the effectiveness of this scheme on noisy data from two dynamical systems with periodic limit cycle, a biopathway, and an application from soft-tissue mechanics. Our study also provides a comparative evaluation on a wide range of signal-to-noise ratios
    • …
    corecore