7,130 research outputs found

    A Multiple Cascade-Classifier System for a Robust and Partially Unsupervised Updating of Land-Cover Maps

    Get PDF
    A system for a regular updating of land-cover maps is proposed that is based on the use of multitemporal remote-sensing images. Such a system is able to face the updating problem under the realistic but critical constraint that, for the image to be classified (i.e., the most recent of the considered multitemporal data set), no ground truth information is available. The system is composed of an ensemble of partially unsupervised classifiers integrated in a multiple classifier architecture. Each classifier of the ensemble exhibits the following novel peculiarities: i) it is developed in the framework of the cascade-classification approach to exploit the temporal correlation existing between images acquired at different times in the considered area; ii) it is based on a partially unsupervised methodology capable to accomplish the classification process under the aforementioned critical constraint. Both a parametric maximum-likelihood classification approach and a non-parametric radial basis function (RBF) neural-network classification approach are used as basic methods for the development of partially unsupervised cascade classifiers. In addition, in order to generate an effective ensemble of classification algorithms, hybrid maximum-likelihood and RBF neural network cascade classifiers are defined by exploiting the peculiarities of the cascade-classification methodology. The results yielded by the different classifiers are combined by using standard unsupervised combination strategies. This allows the definition of a robust and accurate partially unsupervised classification system capable of analyzing a wide typology of remote-sensing data (e.g., images acquired by passive sensors, SAR images, multisensor and multisource data). Experimental results obtained on a real multitemporal and multisource data set confirm the effectiveness of the proposed system

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Approximating Likelihood Ratios with Calibrated Discriminative Classifiers

    Full text link
    In many fields of science, generalized likelihood ratio tests are established tools for statistical inference. At the same time, it has become increasingly common that a simulator (or generative model) is used to describe complex processes that tie parameters θ\theta of an underlying theory and measurement apparatus to high-dimensional observations x∈Rp\mathbf{x}\in \mathbb{R}^p. However, simulator often do not provide a way to evaluate the likelihood function for a given observation x\mathbf{x}, which motivates a new class of likelihood-free inference algorithms. In this paper, we show that likelihood ratios are invariant under a specific class of dimensionality reduction maps Rp↦R\mathbb{R}^p \mapsto \mathbb{R}. As a direct consequence, we show that discriminative classifiers can be used to approximate the generalized likelihood ratio statistic when only a generative model for the data is available. This leads to a new machine learning-based approach to likelihood-free inference that is complementary to Approximate Bayesian Computation, and which does not require a prior on the model parameters. Experimental results on artificial problems with known exact likelihoods illustrate the potential of the proposed method.Comment: 35 pages, 5 figure
    • …
    corecore