397 research outputs found

    High-performance Kernel Machines with Implicit Distributed Optimization and Randomization

    Full text link
    In order to fully utilize "big data", it is often required to use "big models". Such models tend to grow with the complexity and size of the training data, and do not make strong parametric assumptions upfront on the nature of the underlying statistical dependencies. Kernel methods fit this need well, as they constitute a versatile and principled statistical methodology for solving a wide range of non-parametric modelling problems. However, their high computational costs (in storage and time) pose a significant barrier to their widespread adoption in big data applications. We propose an algorithmic framework and high-performance implementation for massive-scale training of kernel-based statistical models, based on combining two key technical ingredients: (i) distributed general purpose convex optimization, and (ii) the use of randomization to improve the scalability of kernel methods. Our approach is based on a block-splitting variant of the Alternating Directions Method of Multipliers, carefully reconfigured to handle very large random feature matrices, while exploiting hybrid parallelism typically found in modern clusters of multicore machines. Our implementation supports a variety of statistical learning tasks by enabling several loss functions, regularization schemes, kernels, and layers of randomized approximations for both dense and sparse datasets, in a highly extensible framework. We evaluate the ability of our framework to learn models on data from applications, and provide a comparison against existing sequential and parallel libraries.Comment: Work presented at MMDS 2014 (June 2014) and JSM 201

    A Comparison between Deep Neural Nets and Kernel Acoustic Models for Speech Recognition

    Get PDF
    We study large-scale kernel methods for acoustic modeling and compare to DNNs on performance metrics related to both acoustic modeling and recognition. Measuring perplexity and frame-level classification accuracy, kernel-based acoustic models are as effective as their DNN counterparts. However, on token-error-rates DNN models can be significantly better. We have discovered that this might be attributed to DNN's unique strength in reducing both the perplexity and the entropy of the predicted posterior probabilities. Motivated by our findings, we propose a new technique, entropy regularized perplexity, for model selection. This technique can noticeably improve the recognition performance of both types of models, and reduces the gap between them. While effective on Broadcast News, this technique could be also applicable to other tasks.Comment: arXiv admin note: text overlap with arXiv:1411.400
    corecore