16,206 research outputs found

    Neural Class-Specific Regression for face verification

    Get PDF
    Face verification is a problem approached in the literature mainly using nonlinear class-specific subspace learning techniques. While it has been shown that kernel-based Class-Specific Discriminant Analysis is able to provide excellent performance in small- and medium-scale face verification problems, its application in today's large-scale problems is difficult due to its training space and computational requirements. In this paper, generalizing our previous work on kernel-based class-specific discriminant analysis, we show that class-specific subspace learning can be cast as a regression problem. This allows us to derive linear, (reduced) kernel and neural network-based class-specific discriminant analysis methods using efficient batch and/or iterative training schemes, suited for large-scale learning problems. We test the performance of these methods in two datasets describing medium- and large-scale face verification problems.Comment: 9 pages, 4 figure

    Sparse multinomial kernel discriminant analysis (sMKDA)

    No full text
    Dimensionality reduction via canonical variate analysis (CVA) is important for pattern recognition and has been extended variously to permit more flexibility, e.g. by "kernelizing" the formulation. This can lead to over-fitting, usually ameliorated by regularization. Here, a method for sparse, multinomial kernel discriminant analysis (sMKDA) is proposed, using a sparse basis to control complexity. It is based on the connection between CVA and least-squares, and uses forward selection via orthogonal least-squares to approximate a basis, generalizing a similar approach for binomial problems. Classification can be performed directly via minimum Mahalanobis distance in the canonical variates. sMKDA achieves state-of-the-art performance in terms of accuracy and sparseness on 11 benchmark datasets

    A Simple Iterative Algorithm for Parsimonious Binary Kernel Fisher Discrimination

    Get PDF
    By applying recent results in optimization theory variously known as optimization transfer or majorize/minimize algorithms, an algorithm for binary, kernel, Fisher discriminant analysis is introduced that makes use of a non-smooth penalty on the coefficients to provide a parsimonious solution. The problem is converted into a smooth optimization that can be solved iteratively with no greater overhead than iteratively re-weighted least-squares. The result is simple, easily programmed and is shown to perform, in terms of both accuracy and parsimony, as well as or better than a number of leading machine learning algorithms on two well-studied and substantial benchmarks

    Analyze of Classification Accaptence Subsidy Food Using Kernel Discriminant

    Get PDF
    Subsidy food is government program for social protection to poor households. The aims of this program are to effort households from starve and to decrease poverty. Less precisely target of this program has negative impact. So that to successful program, it’s important to know accuracy classification of admission subsidy food. The variables classification are number of household members, number of household member in work, average expenditure capita, weighted household, and floor area. Discriminant analysis is a multivariate statistical technique which can be used to classify the new observation into a specific group. Kernel discriminant analysis is a non-parametric method which is flexible because it does not have to concern about assumption from certain distribution and equal variance matrices as in parametric discriminant analysis. The classification using the kernel discriminant analysis with the normal kernel function with optimum bandwidth 0.6 gives accurate classification 75.35%

    Dynamic Linear Discriminant Analysis in High Dimensional Space

    Get PDF
    High-dimensional data that evolve dynamically feature predominantly in the modern data era. As a partial response to this, recent years have seen increasing emphasis to address the dimensionality challenge. However, the non-static nature of these datasets is largely ignored. This paper addresses both challenges by proposing a novel yet simple dynamic linear programming discriminant (DLPD) rule for binary classification. Different from the usual static linear discriminant analysis, the new method is able to capture the changing distributions of the underlying populations by modeling their means and covariances as smooth functions of covariates of interest. Under an approximate sparse condition, we show that the conditional misclassification rate of the DLPD rule converges to the Bayes risk in probability uniformly over the range of the variables used for modeling the dynamics, when the dimensionality is allowed to grow exponentially with the sample size. The minimax lower bound of the estimation of the Bayes risk is also established, implying that the misclassification rate of our proposed rule is minimax-rate optimal. The promising performance of the DLPD rule is illustrated via extensive simulation studies and the analysis of a breast cancer dataset.Comment: 34 pages; 3 figure

    Kernel Multivariate Analysis Framework for Supervised Subspace Learning: A Tutorial on Linear and Kernel Multivariate Methods

    Full text link
    Feature extraction and dimensionality reduction are important tasks in many fields of science dealing with signal processing and analysis. The relevance of these techniques is increasing as current sensory devices are developed with ever higher resolution, and problems involving multimodal data sources become more common. A plethora of feature extraction methods are available in the literature collectively grouped under the field of Multivariate Analysis (MVA). This paper provides a uniform treatment of several methods: Principal Component Analysis (PCA), Partial Least Squares (PLS), Canonical Correlation Analysis (CCA) and Orthonormalized PLS (OPLS), as well as their non-linear extensions derived by means of the theory of reproducing kernel Hilbert spaces. We also review their connections to other methods for classification and statistical dependence estimation, and introduce some recent developments to deal with the extreme cases of large-scale and low-sized problems. To illustrate the wide applicability of these methods in both classification and regression problems, we analyze their performance in a benchmark of publicly available data sets, and pay special attention to specific real applications involving audio processing for music genre prediction and hyperspectral satellite images for Earth and climate monitoring
    corecore