456 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF

    Computational Approaches to Drug Profiling and Drug-Protein Interactions

    Get PDF
    Despite substantial increases in R&D spending within the pharmaceutical industry, denovo drug design has become a time-consuming endeavour. High attrition rates led to a long period of stagnation in drug approvals. Due to the extreme costs associated with introducing a drug to the market, locating and understanding the reasons for clinical failure is key to future productivity. As part of this PhD, three main contributions were made in this respect. First, the web platform, LigNFam enables users to interactively explore similarity relationships between ‘drug like’ molecules and the proteins they bind. Secondly, two deep-learning-based binding site comparison tools were developed, competing with the state-of-the-art over benchmark datasets. The models have the ability to predict offtarget interactions and potential candidates for target-based drug repurposing. Finally, the open-source ScaffoldGraph software was presented for the analysis of hierarchical scaffold relationships and has already been used in multiple projects, including integration into a virtual screening pipeline to increase the tractability of ultra-large screening experiments. Together, and with existing tools, the contributions made will aid in the understanding of drug-protein relationships, particularly in the fields of off-target prediction and drug repurposing, helping to design better drugs faster

    Seamless Multimodal Biometrics for Continuous Personalised Wellbeing Monitoring

    Full text link
    Artificially intelligent perception is increasingly present in the lives of every one of us. Vehicles are no exception, (...) In the near future, pattern recognition will have an even stronger role in vehicles, as self-driving cars will require automated ways to understand what is happening around (and within) them and act accordingly. (...) This doctoral work focused on advancing in-vehicle sensing through the research of novel computer vision and pattern recognition methodologies for both biometrics and wellbeing monitoring. The main focus has been on electrocardiogram (ECG) biometrics, a trait well-known for its potential for seamless driver monitoring. Major efforts were devoted to achieving improved performance in identification and identity verification in off-the-person scenarios, well-known for increased noise and variability. Here, end-to-end deep learning ECG biometric solutions were proposed and important topics were addressed such as cross-database and long-term performance, waveform relevance through explainability, and interlead conversion. Face biometrics, a natural complement to the ECG in seamless unconstrained scenarios, was also studied in this work. The open challenges of masked face recognition and interpretability in biometrics were tackled in an effort to evolve towards algorithms that are more transparent, trustworthy, and robust to significant occlusions. Within the topic of wellbeing monitoring, improved solutions to multimodal emotion recognition in groups of people and activity/violence recognition in in-vehicle scenarios were proposed. At last, we also proposed a novel way to learn template security within end-to-end models, dismissing additional separate encryption processes, and a self-supervised learning approach tailored to sequential data, in order to ensure data security and optimal performance. (...)Comment: Doctoral thesis presented and approved on the 21st of December 2022 to the University of Port

    Efficient Memory-Enhanced Transformer for Long-Document Summarization in Low-Resource Regimes

    Get PDF
    Long document summarization poses obstacles to current generative transformer-based models because of the broad context to process and understand. Indeed, detecting long-range dependencies is still challenging for today’s state-of-the-art solutions, usually requiring model expansion at the cost of an unsustainable demand for computing and memory capacities. This paper introduces Emma, a novel efficient memory-enhanced transformer-based architecture. By segmenting a lengthy input into multiple text fragments, our model stores and compares the current chunk with previous ones, gaining the capability to read and comprehend the entire context over the whole document with a fixed amount of GPU memory. This method enables the model to deal with theoretically infinitely long documents, using less than 18 and 13 GB of memory for training and inference, respectively. We conducted extensive performance analyses and demonstrate that Emma achieved competitive results on two datasets of different domains while consuming significantly less GPU memory than competitors do, even in low-resource settings

    Learning representations for effective and explainable software bug detection and fixing

    Get PDF
    Software has an integral role in modern life; hence software bugs, which undermine software quality and reliability, have substantial societal and economic implications. The advent of machine learning and deep learning in software engineering has led to major advances in bug detection and fixing approaches, yet they fall short of desired precision and recall. This shortfall arises from the absence of a \u27bridge,\u27 known as learning code representations, that can transform information from source code into a suitable representation for effective processing via machine and deep learning. This dissertation builds such a bridge. Specifically, it presents solutions for effectively learning code representations using four distinct methods?context-based, testing results-based, tree-based, and graph-based?thus improving bug detection and fixing approaches, as well as providing developers insight into the foundational reasoning. The experimental results demonstrate that using learning code representations can significantly enhance explainable bug detection and fixing, showcasing the practicability and meaningfulness of the approaches formulated in this dissertation toward improving software quality and reliability
    • …
    corecore